SAFETY PRECAUTIONS

The machine is equipped with safety devices which serve to protect personnel and the machine itself from hazards arising from unforeseen accidents. However, operators must not rely exclusively on these safety devices: they must also become fully familiar with the safety guidelines presented below to ensure accident-free operation. This instruction manual and the warning signs attached to the machine cover only those hazards which Okuma can predict. Be aware that they do not cover all possible hazards.

1. Precautions Relating to Machine Installation

(1) Install the machine at a site where the following conditions (the conditions for achievement of the guaranteed accuracy) apply.
 • Ambient temperature: 17 to 25°C
 • Ambient humidity: 40% to 75% at 20°C (no condensation)
 • Site not subject to direct sunlight or excessive vibration; environment as free of dust, acid, corrosive gases, and salt spray as possible.

(2) Prepare a primary power supply that complies with the following requirements.
 • Voltage: 200 V
 • Voltage fluctuation: ±10% max.
 • Power supply frequency: 50/60 Hz
 • Do not draw the primary power supply from a distribution panel that also supplies a major noise source (for example, an electric welder or electric discharge machine) since this could cause malfunction of the CNC unit.
 • If possible, connect the machine to a ground not used by any other equipment. If there is no choice but to use a common ground, the other equipment must not generate a large amount of noise (such as an electric welder or electric discharge machine).

(3) Installation Environment
 Observe the following points when installing the control enclosure.
 • Make sure that the CNC unit will not be subject to direct sunlight.
 • Make sure that the control enclosure will not be splashed with chips, water, or oil.
 • Make sure that the control enclosure and operation panel are not subject to excessive vibrations or shock.
 • The permissible ambient temperature range for the control enclosure is 0 to 40°C.
 • The permissible ambient humidity range for the control enclosure is 30 to 95% (no condensation).
 • The maximum altitude at which the control enclosure can be used is 1000 m (3281 ft.).

2. Points to Check before Turning on the Power

(1) Close all the doors of the control enclosure and operation panel to prevent the entry of water, chips, and dust.

(2) Make absolutely sure that there is nobody near the moving parts of the machine, and that there are no obstacles around the machine, before starting machine operation.

(3) When turning on the power, turn on the main power disconnect switch first, then the CONTROL ON switch on the operation panel.
3. **Precautions Relating to Operation**

 (1) After turning on the power, carry out inspection and adjustment in accordance with the daily inspection procedure described in this instruction manual.

 (2) Use tools whose dimensions and type are appropriate for the work undertaken and the machine specifications. Do not use badly worn tools since they can cause accidents.

 (3) Do not, for any reason, touch the spindle or tool while spindle indexing is in progress since the spindle could rotate: this is dangerous.

 (4) Check that the workpiece and tool are properly secured.

 (5) Never touch a workpiece or tool while it is rotating: this is extremely dangerous.

 (6) Do not remove chips by hand while machining is in progress since this is dangerous. Always stop the machine first, then remove the chips with a brush or broom.

 (7) Do not operate the machine with any of the safety devices removed. Do not operate the machine with any of the covers removed unless it is necessary to do so.

 (8) Always stop the machine before mounting or removing a tool.

 (9) Do not approach or touch any moving part of the machine while it is operating.

 (10) Do not touch any switch or button with wet hands. This is extremely dangerous.

 (11) Before using any switch or button on the operation panel, check that it is the one intended.

4. **Precautions Relating to the ATC**

 (1) The tool clamps of the magazine, spindle, etc., are designed for reliability, but it is possible that a tool could be released and fall in the event of an unforeseen accident, exposing you to danger: do not touch or approach the ATC mechanism during ATC operation.

 (2) Always inspect and change tools in the magazine in the manual magazine interrupt mode.

 (3) Remove chips adhering to the magazine at appropriate intervals since they can cause misoperation. Do not use compressed air to remove these chips since it will only push the chips further in.

 (4) If the ATC stops during operation for some reason and it has to be inspected without turning the power off, do not touch the ATC since it may start moving suddenly.

5. **On Finishing Work**

 (1) On finishing work, clean the vicinity of the machine.

 (2) Return the ATC, APC and other equipment to the predetermined retraction position.

 (3) Always turn off the power to the machine before leaving it.

 (4) To turn off the power, turn off the CONTROL ON switch on the operation panel first, then the main power disconnect switch.
6. Precautions during Maintenance Inspection and When Trouble Occurs

In order to prevent unforeseen accidents, damage to the machine, etc., it is essential to observe the following points when performing maintenance inspections or during checking when trouble has occurred.

(1) When trouble occurs, press the emergency stop button on the operation panel to stop the machine.

(2) Consult the person responsible for maintenance to determine what corrective measures need to be taken.

(3) If two or more persons must work together, establish signals so that they can communicate to confirm safety before proceeding to each new step.

(4) Use only the specified replacement parts and fuses.

(5) Always turn the power off before starting inspection or changing parts.

(6) When parts are removed during inspection or repair work, always replace them as they were and secure them properly with their screws, etc.

(7) When carrying out inspections in which measuring instruments are used - for example voltage checks - make sure the instrument is properly calibrated.

(8) Do not keep combustible materials or metals inside the control enclosure or terminal box.

(9) Check that cables and wires are free of damage: damaged cables and wires will cause current leakage and electric shocks.

(10) Maintenance inside the Control Enclosure

 a) Switch the main power disconnect switch OFF before opening the control enclosure door.

 b) Even when the main power disconnect switch is OFF, there may some residual charge in the MCS drive unit (servo/spindle), and for this reason only service personnel are permitted to perform any work on this unit. Even then, they must observe the following precautions.

 • MCS drive unit (servo/spindle)
 The residual voltage discharges two minutes after the main switch is turned OFF.

 c) The control enclosure contains the NC unit, and the NC unit has a printed circuit board whose memory stores the machining programs, parameters, etc. In order to ensure that the contents of this memory will be retained even when the power is switched off, the memory is supplied with power by a battery. Depending on how the printed circuit boards are handled, the contents of the memory may be destroyed and for this reason only service personnel should handle these boards.

(11) Periodic Inspection of the Control Enclosure

 a) Cleaning the cooling unit
 The cooling unit in the door of the control enclosure serves to prevent excessive temperature rise inside the control enclosure and increase the reliability of the NC unit. Inspect the following points every three months.

 • Is the fan motor inside the cooling unit working?
 The motor is normal if there is a strong draft from the unit.

 • Is the external air inlet blocked?
 If it is blocked, clean it with compressed air.
7. General Precautions

(1) Keep the vicinity of the machine clean and tidy.

(2) Wear appropriate clothing while working, and follow the instructions of someone with sufficient training.

(3) Make sure that your clothes and hair cannot become entangled in the machine. Machine operators must wear safety equipment such as safety shoes and goggles.

(4) Machine operators must read the instruction manual carefully and make sure of the correct procedure before operating the machine.

(5) Memorize the position of the emergency stop button so that you can press it immediately at any time and from any position.

(6) Do not access the inside of the control panel, transformer, motor, etc., since they contain high-voltage terminals and other components which are extremely dangerous.

(7) If two or more persons must work together, establish signals so that they can communicate to confirm safety before proceeding to each new step.

8. Symbols Used in This Manual

The following warning indications are used in this manual to draw attention to information of particular importance. Read the instructions marked with these symbols carefully and follow them.

- **DANGER**: Indicates an imminent hazard which, if not avoided, will result in death or serious injury.

- **WARNING**: Indicates hazards which, if not avoided, could result in death or serious injury.

- **CAUTION**: Indicates hazards which, if not avoided, could result in minor injuries or damage to devices or equipment.

- **NOTICE**: Indicates precautions relating to operation or use.
Thank you very much for choosing our CNC system. This numerical control system is an expandable CNC with various features including a multi-main CPU system. Major features of the CNC system are described below.

1. Expandable CNC with a multi-main CPU system
 A multi-main CPU system on which up to seven engines (main CPUs) can be mounted is used. An excellent performance and cost effectiveness have been realized as a leader of increasingly rapid and accurate machine tools. The CNC system can be adapted to any models and variations by changing the construction of the main CPUs. The machine is controlled by a built-in PLC.

2. Compact and highly reliable
 The CNC system has become compact and highly reliable because of advanced hardware technology, including UCMB (Universal Compact Main Board), I/O link, and servo link. The 'variable software' as a technical philosophy of the OSPs supported by a flash memory. Functions may be added to the CNC system as required after delivery.

3. NC operation panels
 The following types of NC operation panels are offered to improve the user-friendliness.
 - Color CRT operation panels
 - Thin color operation panels (horizontal)
 - Thin color operation panels (vertical)
 One or more of the above types may not be used for some models.

4. Machining management functions
 These functions contribute to the efficient operation of the CNC system and improve the profitability from small quantity production of multiple items and variable quantity production of variations. Major control functions are described below.
 a) Reduction of setup time
 With increase in small-volume production, machining data setting is more frequently needed. The simplified file operation facilitates such troublesome operation. The documents necessary for setup, such as work instructions, are displayed on the CNC system to eliminate the necessity of controlling drawings and further reduce the setup time.
 b) Production Status Monitor
 The progress and operation status can be checked on a real-time basis on the screen of the CNC system.
 c) Reduction of troubleshooting time
 Correct information is quickly available for troubleshooting.

5. Help functions
 When an alarm is raised, press the help key to view the content of the alarm. This helps take quick action against the alarm.

To operate the CNC system to its maximum performance, thoroughly read and understand this instruction manual before use. Keep this instruction manual at hand so that it will be available when you need a help.

screens

Different screens are used for different models. Therefore, the screens used on your CNC system may differ from those shown in this manual.
TABLE OF CONTENTS

SECTION 1 PROGRAM CONFIGURATIONS ...1

1. Program Types and Extensions ..1
2. Program Name ..2
3. Sequence Name ..3
4. Program Format ..3
 4-1. Word Configuration ..3
 4-2. Block Configuration ..4
 4-3. Program ..4
 4-4. Programmable Range of Address Characters ..5
5. Mathematical Operation Functions ...6
6. Optional Block Skip ...9
7. Program Branch Function (Optional) ...10
8. Comment Function (Control OUT/IN) ..10
9. Message Function (Optional) ...11
10. Operation Methods and Program Storage Memory Capacity11

SECTION 2 COORDINATE SYSTEMS AND COORDINATE COMMANDS14

1. Coordinate System ..14
 1-1. Coordinate Systems and Values ..14
 1-3. Work Coordinate System ...15
 1-4. Local Coordinate System ...15
2. COORDINATE COMMANDS ...16
 2-1. Numerically Controlled Axes ..16
 2-2. Unit Systems ..17
 2-3. Travel Limit Commands (G22, G23) (Optional) ...22
 2-4. Home Position Command (G30) ..24
 2-5. Absolute and Incremental Commands (G90, G91)25

SECTION 3 FEED FUNCTIONS ..26

1. Rapid Feed ...26
2. Cutting Feed ..26
 2-1. Feed per Minute (G94) ..26
 2-2. Feed per Revolution (G95) ..26
 2-3. F1-digit Feed Function (Optional) ...27
3. Exact Stop Check Function (G09, G61, G64) ...28
4. Automatic Acceleration and Deceleration ..29
5. Following Error Check ...30
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Positioning (G00)</td>
<td>31</td>
</tr>
<tr>
<td>7.</td>
<td>Uni-directional Positioning (G60)</td>
<td>32</td>
</tr>
<tr>
<td>8.</td>
<td>Linear Interpolation (G01)</td>
<td>33</td>
</tr>
<tr>
<td>9.</td>
<td>Plane Selection (G17, G18, G19)</td>
<td>34</td>
</tr>
<tr>
<td>10.</td>
<td>Circular Interpolation (G02, G03)</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Helical Cutting (G02, G03) (Optional)</td>
<td>39</td>
</tr>
<tr>
<td>4.</td>
<td>Preparatory Functions</td>
<td>40</td>
</tr>
<tr>
<td>1.</td>
<td>Dwell Command (G04)</td>
<td>40</td>
</tr>
<tr>
<td>2.</td>
<td>Programmable Mirror Image (G62) (Optional)</td>
<td>41</td>
</tr>
<tr>
<td>3.</td>
<td>Work Coordinate System Selection (G15, G16)</td>
<td>43</td>
</tr>
<tr>
<td>4.</td>
<td>Work Coordinate System Change (G92)</td>
<td>44</td>
</tr>
<tr>
<td>5.</td>
<td>Unit System Check (G20, G21) (Optional)</td>
<td>44</td>
</tr>
<tr>
<td>6.</td>
<td>Coordinate System Conversion Functions (Optional)</td>
<td>45</td>
</tr>
<tr>
<td>6-1.</td>
<td>Parallel Shift and Rotation of Coordinate Systems (G11, G10)</td>
<td>45</td>
</tr>
<tr>
<td>6-2.</td>
<td>Copy Function (COPY, COPYE)</td>
<td>47</td>
</tr>
<tr>
<td>7.</td>
<td>Workpiece Geometry Enlargement / Reduction Function (G51, G50) (Optional)</td>
<td>49</td>
</tr>
<tr>
<td>5.</td>
<td>S, T, AND M Functions</td>
<td>51</td>
</tr>
<tr>
<td>1.</td>
<td>S Code Function (Spindle Function)</td>
<td>51</td>
</tr>
<tr>
<td>2.</td>
<td>T Code Function</td>
<td>51</td>
</tr>
<tr>
<td>3.</td>
<td>M Code Function (Miscellaneous Function)</td>
<td>52</td>
</tr>
<tr>
<td>3-1.</td>
<td>Examples of M Codes</td>
<td>52</td>
</tr>
<tr>
<td>6.</td>
<td>Offset Functions</td>
<td>55</td>
</tr>
<tr>
<td>1.</td>
<td>Tool Length Offset Function (G53 - G59)</td>
<td>55</td>
</tr>
<tr>
<td>2.</td>
<td>Cutter Radius Compensation (G40, G41, G42)</td>
<td>56</td>
</tr>
<tr>
<td>2-1.</td>
<td>Cutter Radius Compensation Function</td>
<td>56</td>
</tr>
<tr>
<td>2-2.</td>
<td>Tool Movement in Start-up</td>
<td>58</td>
</tr>
<tr>
<td>2-3.</td>
<td>Tool Movement in Cutter Radius Compensation Mode</td>
<td>61</td>
</tr>
<tr>
<td>2-4.</td>
<td>Tool Movement when Cutter Radius Compensation is Canceled</td>
<td>66</td>
</tr>
<tr>
<td>2-5.</td>
<td>Changing Compensation Direction in Cutter Radius Compensation Mode</td>
<td>70</td>
</tr>
<tr>
<td>2-6.</td>
<td>Notes on Cutter Radius Compensation</td>
<td>73</td>
</tr>
<tr>
<td>3.</td>
<td>Cutter Radius Compensation Mode Override Function</td>
<td>82</td>
</tr>
<tr>
<td>3-1.</td>
<td>Automatic Override at Corners</td>
<td>82</td>
</tr>
<tr>
<td>3-2.</td>
<td>Circular Arc Inside Cutting Override</td>
<td>84</td>
</tr>
<tr>
<td>4.</td>
<td>Three-dimensional Tool Offset (G43, G44) (Optional)</td>
<td>85</td>
</tr>
<tr>
<td>4-1.</td>
<td>Three-dimensional Tool Offset Start-up</td>
<td>85</td>
</tr>
<tr>
<td>4-2.</td>
<td>Three-dimensional Tool Offset Vector</td>
<td>86</td>
</tr>
<tr>
<td>4-3.</td>
<td>Canceling Three-dimensional Tool Offset</td>
<td>88</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4-4</td>
<td>Actual Position Data Display And Feedrate</td>
<td>88</td>
</tr>
<tr>
<td>4-5</td>
<td>Relationship with Other G Functions</td>
<td>89</td>
</tr>
<tr>
<td>4-6</td>
<td>Relationship to Other Tool Offset Functions</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>SECTION 7 FIXED CYCLES</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Table of Fixed Cycle Functions</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>Fixed Cycle Operations</td>
<td>92</td>
</tr>
<tr>
<td>2-1</td>
<td>Determining the Positioning Plane and the Cycle Axis</td>
<td>93</td>
</tr>
<tr>
<td>2-2</td>
<td>Controlling the Return Level</td>
<td>94</td>
</tr>
<tr>
<td>2-3</td>
<td>Fixed Cycle Mode</td>
<td>95</td>
</tr>
<tr>
<td>2-4</td>
<td>Cycle Operation Conditions</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>General Rules for Programming Fixed Cycles</td>
<td>96</td>
</tr>
<tr>
<td>3-1</td>
<td>Programming Format</td>
<td>96</td>
</tr>
<tr>
<td>3-2</td>
<td>Command Items Necessary for Fixed Cycle Function Commands</td>
<td>97</td>
</tr>
<tr>
<td>3-3</td>
<td>Absolute Programming Mode and Incremental Programming Mode</td>
<td>99</td>
</tr>
<tr>
<td>3-4</td>
<td>Positional Relationship among Return Point Level, Point R Level and Point Z Level</td>
<td>100</td>
</tr>
<tr>
<td>3-5</td>
<td>Axis Shift</td>
<td>100</td>
</tr>
<tr>
<td>3-6</td>
<td>Z-axis G01 Mode Return Function</td>
<td>101</td>
</tr>
<tr>
<td>3-7</td>
<td>Relationships between Fixed Cycle Functions and Other Functions</td>
<td>102</td>
</tr>
<tr>
<td>3-8</td>
<td>Notes for Programming a Fixed Cycle</td>
<td>103</td>
</tr>
<tr>
<td>4</td>
<td>Specification of Return-point Level (G71)</td>
<td>104</td>
</tr>
<tr>
<td>5</td>
<td>High Speed Deep Hole Drilling Cycle (G73)</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>Reverse Tapping Cycle (G74)</td>
<td>106</td>
</tr>
<tr>
<td>7</td>
<td>Fine Boring (G76)</td>
<td>107</td>
</tr>
<tr>
<td>8</td>
<td>Fixed Cycle Cancel (G80)</td>
<td>108</td>
</tr>
<tr>
<td>9</td>
<td>Drilling Cycle (G81, G82)</td>
<td>109</td>
</tr>
<tr>
<td>10</td>
<td>Deep Hole Drilling Cycle (G83)</td>
<td>110</td>
</tr>
<tr>
<td>11</td>
<td>Tapping Cycle (G84)</td>
<td>112</td>
</tr>
<tr>
<td>12</td>
<td>Boring Cycle (G85, G89)</td>
<td>113</td>
</tr>
<tr>
<td>13</td>
<td>Boring Cycle (G86)</td>
<td>114</td>
</tr>
<tr>
<td>14</td>
<td>Back Boring Cycle (G87)</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>SECTION 8 COORDINATE CALCULATION FUNCTION (OPTIONAL)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Table of Functions</td>
<td>116</td>
</tr>
<tr>
<td>2</td>
<td>General Rules of Coordinate Calculation</td>
<td>117</td>
</tr>
<tr>
<td>2-1</td>
<td>Programming Format for Coordinate Calculation</td>
<td>117</td>
</tr>
<tr>
<td>2-2</td>
<td>Plane on Which Coordinate Calculation is Performed, and Motion Axes</td>
<td>119</td>
</tr>
<tr>
<td>2-3</td>
<td>Positioning at Calculated Pattern Points</td>
<td>119</td>
</tr>
<tr>
<td>2-4</td>
<td>Others</td>
<td>119</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

3. Omit (OMIT) .. 120
4. Restart (RSTRT) ... 121
5. Line at Angle (LAA) ... 122
6. Grid (GRDX, GRDY) .. 123
7. Double Grid (DGRDX, DGRDY) .. 124
8. Square (SQRX, SQRY) ... 126
9. Bolt Hole Circle (BHC) ... 127
10. Arc (ARC) .. 128

SECTION 9 AREA MACHINING FUNCTIONS (OPTIONAL) ... 129
1. List of Area Machining Functions .. 129
2. Area Machining Operations ... 129
 2-1. Basic Operations ... 129
 2-2. Tool Movements ... 130
3. Area Machining Plane and Cycle Axis ... 132
4. General Rules ... 133
 4-1. General Command Format ... 133
 4-2. Area Machining Functions and Commands to be Used 133
 4-3. Data Entry in Incremental/Absolute Mode .. 134
 4-4. Relationship among Present Point, Point R Level, and Finish Surface Level 135
 4-5. Definition of Machining Area (I, J) ... 135
 4-6. Notes on Area Machining .. 136
5. Face Milling Functions (FMILR, FMILF) ... 137
6. Pocket Milling (PMIL, PMILR) .. 141
 6-1. Zigzag Pattern Pocket Milling Function (PMIL) .. 141
 6-2. Spiral Pattern Pocket Milling Function (PMILR) .. 145
7. Round Milling Functions (RMILO, RMILI) .. 148

SECTION 10 SUBPROGRAM FUNCTIONS ... 154
1. Overview .. 154
 1-1. Calling a Subprogram ... 154
2. Simple Call (CALL) .. 157
3. Subprogram Call after Axis Movement (MODIN, MODOUT) 159
4. G and M Code Macro Functions .. 164
5. Program Call Function Using Variables .. 167
 5-1. Outline .. 167
 5-2. Program Call function by Variables ... 167
 5-3. Program Registration Function ... 169

SECTION 11 USER TASK ... 170
1. User Task 1 170
 1-1. Branch Function .. 170
 1-2. Variable Function ... 173
 1-3. Math Functions .. 177
 1-4. System Variables ... 178
2. User Task 2 (Optional) ... 211
 2-1. I/O Variables ... 211
 2-2. Math Functions .. 216

SECTION 12 SCHEDULE PROGRAMS .. 219
 1. Overview .. 219
 2. PSELECT Block ... 219
 3. Branch Block ... 222
 4. Variables Setting Block ... 223
 5. Schedule Program End Block ... 223

SECTION 13 OTHER FUNCTIONS ... 224
 1. Table Index Specification ... 224
 1-1. 5-Degree Index Commands ... 224
 1-2. 1-Degree Index Commands .. 225
 1-3. 0.001 Degree Commands (Optional) ... 227
 2. ANGULAR COMMANDS ... 229
 3. MANUAL SHIFT AMOUNT CANCEL COMMAND ... 230

SECTION 14 FILE MANAGEMENT ... 233
 1. Files .. 233
 2. Various Files ... 234

SECTION 15 APPENDIX ... 235
 1. G Code Table .. 235
 2. Table of Mnemonic Codes ... 239
 3. M Code Table .. 240
 4. Table of Reserved Local Variable Words ... 246
 5. Table of System Variables ... 247
1. Program Types and Extensions

For OSP-E100M/E10M, four kinds of programs are used: schedule programs, main programs, sub-
programs, and library programs. The following briefly explains these four kinds of programs.

Schedule Program
When more than one type of workpiece is machined using a pallet changer or other loading and
unloading equipment, multiple main programs are used. A schedule program is used to specify the
order in which the main programs are executed and the number of times the individual main pro-
gram is executed. Using a schedule program makes it possible to carry out untended operation
easily.
It is not necessary to assign a program name. The END code must be specified at the end of a
schedule program. For details, refer to SECTION 12, “SCHEDULE PROGRAMS”.

Main Program
A main program contains a series of commands to machine one type of workpiece. Subprograms
can be called from a main program to simplify programming.
A main program begins with a program name which begins with address character “O” and ends
with M02 or M30.

Subprogram
A subprogram can be called from a main program or another subprogram. There are two types of
subprograms: those written and supplied by Okuma (maker subprogram), and those written by the
customer (user subprogram).
The program name, which must start with “O”, is required at the beginning of the subprogram. The
RTS command must be specified at the end of the subprogram. For details, refer to SECTION 10,
“SUBPROGRAM FUNCTIONS”.

Library Program
Subprograms and G code macros which are used frequently may be stored as library programs.
Since library programs are automatically stored in the operation buffer area when the power is
turned on, they can be accessed at any time.
When a library program is stored in the operation buffer area, both a file name and an extension are
stored. The file name format is shown below.

- Program file format
 Main file name: Begins with alphabetic characters (max. 16 characters)

- Extensions
 SDF: Schedule program file
 MIN: Main program file
 MSB: Maker subprogram file
 SSB: System subprogram file
 SUB: User subprogram file
 LIB: Library program file
2. Program Name

All programs are assigned a program name or a program number, and a desired program can be called and executed by simply specifying the program name or number. A program name that contains only alphabetic characters is called a program label and the one that contains only numbers is called a program number. In this manual, both of them are referred to as a program name.

Program Name Designation

- Enter letters of the alphabet (A to Z) or numbers (0 to 9) following address character “O”. Note that no space is allowed between “O” and a letter of the alphabet or a number. Similarly, no space is allowed between letters of the alphabet and numbers.
- Up to four characters can be used.
- An alphabetic character can only be used in a program name if it begins with an alphabetic character. Although a program beginning with an alphabetic character can contain a number in it, one that begins with a number cannot contain an alphabetic character.
- Although all of the four characters may be numeric, program names of the type “OO***” (**: alphanumeric) cannot be used since this kind of program name is used for system operation, automating functions, etc.
- A block which contains a program name must not contain other commands.
- A program name may not be used for a schedule program.
- The program name assigned to a main program / subprogram must begin with address character “O”.
- Since program names are handled in units of characters, the following names are judged to be different program names.
 - O0123 and O123
 - O00 and O0
- All program names must be unique.
 If program name “O1” is used for more than one program, the operation to call program “O1” may call a program differing from the desired one.
3. Sequence Name

All blocks in a program are assigned a sequence name that begins with address character “N” followed by an alphanumeric sequence.
Functions such as a sequence search function, a sequence stop function and a branching function can be used for blocks assigned a sequence name.
A sequence name that contains only alphabetic characters is called a sequence label and the one that contains only numbers is called a sequence number. In this manual, both of them are referred to as a sequence name.

Sequence Name Designation

- Enter letters of the alphabet (A to Z) or numbers (0 to 9) following address character “N”.
- Up to five characters can be used.
- Both alphabetic characters and numbers may be used in a sequence name. If an alphabetic character is used in a sequence name, however, the sequence name must begin with an alphabetic character.
- Although a sequence name must be specified at the beginning of a block, an optional block skip code may be placed before a sequence name.
- Sequence numbers may be specified in any order.
- Since sequence names are handled in units of characters, the following names are judged to be different sequence names.
 - N0123 and N123
 - N00 and N0
 - When a sequence label is used, place a space or a tab after the sequence label.

4. Program Format

4-1. Word Configuration

A word is defined as an address character followed by a group of numeric values, an expression, or a variable name. If a word consists of an expression or a variable, the address character must be followed by an equal sign “=”. Examples:

\[
\begin{align*}
X & = 100 \\
Y & = 100+\sin[50] \\
Z & = VC1+VC2
\end{align*}
\]

- An address character is one of the alphabetic characters A through Z and defines the meaning of the entry specified following it. In addition, an extended address character, consisting of two alphabetic characters, may also be used.
- Refer to SECTION 11, “Variable Function” for more information on variables.
- Hexadecimal may be used for numeric values.
 Example: X#1000H (same as X4096)
4-2. Block Configuration

A group consisting of several words is called a block, and a block expresses a command. Blocks are delimited by an end of block code.

- The end of block code differs depending on the selected code system, ISO or EIA:
 - ISO: LF
 - EIA: CR
- A block comprises several words.
- A block may contain up to 158 characters.
 A block consists of the following commands, for example.

```
N__ G__ X__ Y__ F__ S__ T__ M__
```

4-3. Program

A program consists of several blocks.
4-4. Programmatic Range of Address Characters

The programmable ranges of numerical values of individual address characters are shown in the following table.

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Programmable Range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Metric</td>
<td>Inch</td>
</tr>
<tr>
<td>O</td>
<td>Program name</td>
<td>0000 - 9999</td>
<td>Same as metric</td>
</tr>
<tr>
<td>N</td>
<td>Sequence name</td>
<td>00000 - 99999</td>
<td>Same as metric</td>
</tr>
<tr>
<td>G</td>
<td>Preparatory function</td>
<td>0 - 399</td>
<td>Same as metric</td>
</tr>
<tr>
<td>X, Y, Z, U, V, W</td>
<td>Coordinate values (linear axis)</td>
<td>±99999.999mm</td>
<td>±9999.9999inch</td>
</tr>
<tr>
<td>I, J, K</td>
<td>Coordinate values of center of arc</td>
<td>±99999.999mm</td>
<td>±9999.9999inch</td>
</tr>
<tr>
<td>R</td>
<td>Radius of arc</td>
<td>±99999.999mm</td>
<td>±9999.9999inch</td>
</tr>
<tr>
<td>A, B, C</td>
<td>Coordinate values of rotary axis</td>
<td>±360.0000deg</td>
<td>Same as metric</td>
</tr>
<tr>
<td>F</td>
<td>Feed per minute</td>
<td>0.1 - 24000.0 mm/min</td>
<td>0.1 - 24000.0 inch/min</td>
</tr>
<tr>
<td></td>
<td>Feed per revolution</td>
<td>0.001 - 500.000 mm/rev</td>
<td>0.0001 - 50.0000 inch/rev</td>
</tr>
<tr>
<td></td>
<td>Dwell time period</td>
<td>0.001 - 99999.999 sec</td>
<td>Same as metric</td>
</tr>
<tr>
<td>S</td>
<td>Spindle speed</td>
<td>0 - 65535</td>
<td>Same as metric</td>
</tr>
<tr>
<td>T</td>
<td>Tool number</td>
<td>1 - 9999</td>
<td>Same as metric</td>
</tr>
<tr>
<td>M</td>
<td>Miscellaneous function</td>
<td>0 - 511</td>
<td>Same as metric</td>
</tr>
<tr>
<td>H</td>
<td>Tool length offset number</td>
<td>1 to maximum tool data number</td>
<td>Same as metric</td>
</tr>
<tr>
<td>D</td>
<td>Cutter radius compensation number</td>
<td>1 to maximum tool data number</td>
<td>Same as metric</td>
</tr>
<tr>
<td>P</td>
<td>Dwell time period (during fixed cycle)</td>
<td>0.001 - 99999.999 sec</td>
<td>Same as metric</td>
</tr>
<tr>
<td>Q</td>
<td>Second dwell time period (during fixed cycle)</td>
<td>0.001 - 99999.999 sec</td>
<td>Same as metric</td>
</tr>
<tr>
<td></td>
<td>Depth of cut (during fixed cycle)</td>
<td>0 - 99999.999 mm</td>
<td>0 - 9999.9999inch</td>
</tr>
<tr>
<td></td>
<td>Repetition time (schedule program)</td>
<td>1 - 9999</td>
<td>Same as metric</td>
</tr>
<tr>
<td>R</td>
<td>Cut starting level (during fixed cycle)</td>
<td>±99999.999mm</td>
<td>±9999.9999inch</td>
</tr>
</tbody>
</table>

*: An alarm occurs when any of the following addresses is specified more than once within a block: X, Y, Z, U, V, W, A, B, C, F.
5. Mathematical Operation Functions

Mathematical operation functions are used to convey logical operations, arithmetic operations, and trigonometric functions. A table of the operation symbols is shown below. Operation functions can be used together with variables to control peripherals or to pass on the results of an operation. Here, note that the logic operations and the function operations are available as optional functions.
<table>
<thead>
<tr>
<th>Category</th>
<th>Operation</th>
<th>Operator</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical operation</td>
<td>Exclusive OR</td>
<td>EOR</td>
<td>0110 = 1010 EOR 1100 (See *3.)</td>
</tr>
<tr>
<td></td>
<td>Logical OR</td>
<td>OR</td>
<td>1110 = 1010 OR 1100 (See *3.)</td>
</tr>
<tr>
<td></td>
<td>Logical AND</td>
<td>AND</td>
<td>1000 = 1010 AND 1100 (See *3.)</td>
</tr>
<tr>
<td></td>
<td>Negation</td>
<td>NOT</td>
<td>1010 = NOT 0101</td>
</tr>
<tr>
<td>Arithmetic operation</td>
<td>Addition</td>
<td>+</td>
<td>8 = 5 + 3</td>
</tr>
<tr>
<td></td>
<td>Subtraction</td>
<td>-</td>
<td>2 = 5 - 3</td>
</tr>
<tr>
<td></td>
<td>Multiplication</td>
<td>*</td>
<td>15 = 5 * 3</td>
</tr>
<tr>
<td></td>
<td>Division</td>
<td>/ (slash)</td>
<td>3 = 15/5</td>
</tr>
<tr>
<td>Trigonometric functions, etc.</td>
<td>Sine</td>
<td>SIN</td>
<td>0.5 = SIN [30] (See *4.)</td>
</tr>
<tr>
<td></td>
<td>Cosine</td>
<td>COS</td>
<td>0.5 = COS [60] (See *4.)</td>
</tr>
<tr>
<td></td>
<td>Tangent</td>
<td>TAN</td>
<td>1 = TAN [45] (See *4.)</td>
</tr>
<tr>
<td></td>
<td>Arctangent (1)</td>
<td>ATAN</td>
<td>45 = ATAN [1] (value range: -90 to 90)</td>
</tr>
<tr>
<td></td>
<td>Arctangent (2)</td>
<td>ATAN2</td>
<td>30 = ATAN 2 [1,(Square root 3)] (See *1.)</td>
</tr>
<tr>
<td></td>
<td>Square root</td>
<td>SQRT</td>
<td>4 = SQRT [16]</td>
</tr>
<tr>
<td></td>
<td>Absolute value</td>
<td>ABS</td>
<td>3 = ABS [-3]</td>
</tr>
<tr>
<td></td>
<td>Decimal to binary conversion</td>
<td>BIN</td>
<td>25 = BIN [$25] ($ represents a hexadecimal number.)</td>
</tr>
<tr>
<td></td>
<td>Binary to decimal conversion</td>
<td>BCD</td>
<td>$25 = BCD [25]</td>
</tr>
<tr>
<td></td>
<td>Integer implementation (rounding)</td>
<td>ROUND</td>
<td>128 = ROUND [1.2763 x 102]</td>
</tr>
<tr>
<td></td>
<td>Integer implementation (truncation)</td>
<td>FIX</td>
<td>127 = FIX [1.2763 x 102]</td>
</tr>
<tr>
<td></td>
<td>Integer implementation (raising)</td>
<td>FUP</td>
<td>128 = FUP [1.2763 x 102]</td>
</tr>
<tr>
<td></td>
<td>Unit integer implementation (rounding)</td>
<td>DROUND</td>
<td>13.265 = DROUND [13.26462] (See *2.)</td>
</tr>
<tr>
<td></td>
<td>Unit integer implementation (truncation)</td>
<td>DFIX</td>
<td>13.264 = DFIX [13.26462] (See *2.)</td>
</tr>
<tr>
<td></td>
<td>Unit integer implementation (raising)</td>
<td>DFUP</td>
<td>13.265 = DFUP [13.26462] (See *2.)</td>
</tr>
<tr>
<td></td>
<td>Remainder</td>
<td>MOD</td>
<td>2 = MOD [17, 5]</td>
</tr>
</tbody>
</table>

*1. The value of ATAN2 [b, a] is an argument (range: -180° to 180°) of the point that is expressed by coordinate values (a, b).

*2. In this example, the setting unit is mm.

*3. Blanks must be placed before and after the logical operation symbols (EOR, OR, AND, NOT).
Logical Operations

- Exclusive OR (EOR) $c = a \text{ EOR } b$
 If the two corresponding values agree, EOR outputs 0.
 If the two values do not agree, EOR outputs 1.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Logical OR (OR) $c = a \text{ OR } b$
 If both corresponding values are 0, OR outputs 0.
 If not, OR outputs 1.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Logical AND (AND) $c = a \text{ AND } b$
 If both corresponding values are 1, AND outputs 1.
 If not, AND outputs 0.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Negation (NOT) $b = \text{ NOT } a$
 NOT inverts the value (from 0 to 1, and 1 to 0).

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Arc tangent (1) (ATAN)
 $\theta = \text{ ATAN} \left[\frac{b}{a} \right]$

- Arc tangent (2) (ATAN2)
 $\theta = \text{ ATAN2} \left[\frac{b}{a} \right]$

\[
\text{Diagram:}
\begin{align*}
\theta & = \text{ ATAN} \left[\frac{b}{a} \right] \\
\theta & = \text{ ATAN2} \left[\frac{b}{a} \right]
\end{align*}
\]
• Integer implementation (ROUND, FIX, FUP)
 Converts a specified value into an integer (in units of microns) by rounding off, truncating, or
 raising the number at the first place to the right of the decimal point.

6. Optional Block Skip

[Function]
Blocks preceded by "/n" are ignored in automatic operation mode if the BLOCK SKIP switch, on the
machine panel, is set ON. If the switch is OFF, these blocks are executed normally. The optional
block skip function allows an operator to determine if a specific block should be executed or ignored
in automatic mode operation.
When the block skip function is called, the entire block will be ignored.
[Details]
• In the standard specification, one optional block skip can be specified; as an option, up to three
 are possible. These are distinguished in code as follows: "/1", "/2", "/3". Note that "/" has the
 same meaning as "/1" when this option is selected.
• A slash code "/" must be placed at the start of a block. If it is placed in the middle of a block, an
 alarm is activated. A sequence name may precede a slash code "/".
• A slash code "/" may not be contained in the program name block.
• Blocks which contain a slash code "/" are also subjected to the sequence search function,
 regardless of the BLOCK SKIP switch position.
• Sequence stop is not executed at a block which contains a slash code "/" in single block mode
 operation if the BLOCK SKIP switch is ON. The succeeding block is executed, and then the
 operation stops.
7. Program Branch Function (Optional)

[Function]
The program branch function executes or ignores the program branch command specified in a part program according to the ON/OFF setting of the PROGRAM BRANCH switch on the machine panel. The function corresponds to two program branch switches, PROGRAM BRANCH 1 and PROGRAM BRANCH 2. If the switch is ON, the program branches when the following command is read.

- **IF VPBR1 N*** The program branches to N*** block if the PROGRAM BRANCH 1 switch is ON.
- **IF VPBR2 N*** The program branches to N*** block if the PROGRAM BRANCH 2 switch is ON.

Example:

```
IF VPBR1 N100 <- Branching to N100 if PROGRAM BRANCH 1 switch is ON.
  G00 X100 Z100
N100  G00 Y100
  IF VPBR1 N200 <- Branching to N200 if PROGRAM BRANCH 2 switch is ON.
  G00 X200 Z200
N200  G00 Y200
  M02
```

[Details]
- In operation method B (large-volume program operation mode), use a sequence label name to specify the branch destination.
- The program branch function has the same restrictions as the branch function of User Task 1.
- A program branch command (IF VPBR1 N*** or IF VPBR2 N***) must be specified in a block without other commands.

8. Comment Function (Control OUT/IN)

A program may be made easier to understand by using comments in parentheses.

- A comment must be parenthesized to distinguish it from general operation information. All information placed in parentheses is regarded by the machine as comments.
- Comments are displayed in the normal character size.

Example:

```
N100  G00 X200 (FIRST STEP)  
    Comment
```
9. **Message Function (Optional)**

[Function]
For conditional branching it may be necessary to display a message, depending on the processing at the destination of the branching. The message function is used in such cases, and the message is displayed in enlarged characters.

[Format]
MSG (message statement)

[Details]
- The display of a message statement on the screen is twice the size of normal characters.
- If the MSG code is not followed by a message statement, the comment statement given last up to the present block will be displayed.
- Up to 128 characters may be used in a message statement.
- The message function is possible only during machine operation mode.
- The following code can be used in the program to return the screen to the previous status after the message has been displayed: NMSG

10. **Operation Methods and Program Storage Memory Capacity**

(1) **Operation Capacity**
The NC has a memory to store machining programs. The memory capacity is selected depending on the size of the user program. On execution of a program, the program is transferred from the memory to the operation buffer (RAM). If the program size is larger than the operation buffer capacity, (for example, if the program size is larger than 320 m (1050 ft.) although the operation buffer capacity is 320 m (1050 ft.)), the program cannot be transferred from the memory to the operation buffer in batch (at one time). Depending on the size of a program in comparison to the operation buffer capacity, two types of operation methods are available (operation method A and operation method B), and restrictions apply in programming according to the operation method used.
(2) Operation Methods
Select the operation method using the pop-up window MAIN PROGRAM SELECT (MEMORY MODE) that appears when calling a program to be run. The operation method can be also selected by the setting at the NC optional parameter (word) No. 11.

- When A-Mtd is selected
 Program running method A becomes effective.
 The program to be executed is transferred to the operation buffer in batch.
 This method is used when the program is smaller than the operation buffer capacity.

- When B-Mtd is selected
 Program running method B becomes effective.
 The program to be executed is called to the operation buffer in several segments.
 This method is used when the program is larger than the operation buffer capacity.
 Since schedule programs, subprograms, and library programs are generally called to the operation buffer in batch, these programs must be created with restriction placed on their capacities.

- When S-Mtd is selected
 Program running method S becomes effective.
 This method is used to execute a large program which does not use branch or subprogram call functions.
When selecting an operation method, also select the program size and whether the program has a sub program branch or not (only in the case of operation A and B). The table below shows the relation between the operation method and the program size.

<table>
<thead>
<tr>
<th>Item</th>
<th>Program of normal size</th>
<th>Large program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program running method</td>
<td>Method A</td>
<td>Method B</td>
</tr>
<tr>
<td>Program size limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main program</td>
<td>Up to the total size of stored main program</td>
<td></td>
</tr>
<tr>
<td>Sub program</td>
<td>Total program size is limited to the operation buffer capacity. *1</td>
<td>Total program size depends on the selected operation buffer capacity. *1</td>
</tr>
<tr>
<td>Library program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub program function</td>
<td>Usable</td>
<td>Usable</td>
</tr>
<tr>
<td>Branch function</td>
<td>Usable</td>
<td>Usable</td>
</tr>
<tr>
<td>Destination of a jump specified in branch command</td>
<td>Sequence label only</td>
<td>Sequence label or sequence number</td>
</tr>
<tr>
<td>Main program sequence label limit</td>
<td>Unlimited</td>
<td>Max 30</td>
</tr>
<tr>
<td>Program selection time</td>
<td>*2</td>
<td>*2</td>
</tr>
</tbody>
</table>

*1. Use of extension memory can increase the operation buffer capacity.
*2. Time varies with the selected program size.

(3) Programming Restrictions for the Operation Method
For details of restrictions that must be taken into consideration when writing a program, refer to SECTION 12, “PSELECT BLOCK”.

(4) Operation Buffer Expansion
The operation buffer capacity can be expanded to 320 m (1050 ft.), 640 m (2100 ft.), or 1280 m (4200 ft.) within the range of the tape storage memory capacity.

- The maximum operation capacity of a main program when using operation method B depends on tape storage capacity.
- The library program capacity is equivalent to the designated library program buffer size. This means that the library program buffer size is always contained in the operation capacity even if a library program is not registered.
- The number of subprograms and library programs stored in memory is independent of the operation buffer size. They are always 126 and 65, respectively.
1. Coordinate System

1-1. Coordinate Systems and Values

In order to move a cutting tool to a target position, a coordinate system must be established to specify the target position using coordinate values in the coordinate system. The OSP-E100M/E10M uses three types of coordinate system (machine coordinate system, work coordinate system, and local coordinate system). These coordinate systems are briefly explained below.

- **Machine coordinate system**
 The machine coordinate system is set by the machine tool manufactures. Although the setting may be changed by the user, machine dependent setting values such as pitch error compensation data and travel limit values must be changed accordingly.

- **Work coordinate system**
 A work coordinate system is set by the user.

- **Local coordinate system**
 A local coordinate system set temporarily by the commands in a program. The user can select the coordinate system to be used as needed from the coordinate systems indicated above. The coordinate value is represented by components of the axes which make up the coordinate system. Usually, a maximum of six axis components is used (the number differs depending on the NC unit specifications.)
 Example:

 \[
 X__Y__Z__W__A__C__
 \]

 The number of programmable axes, that is, the number of axis components used to define a coordinate value varies depending on the machine specifications. This manual, therefore, uses the following designation to indicate a coordinate value.
 \[
 IP________
 \]

1-2. **Machine Zero and Machine Coordinate System**

The reference point specific to the individual machine is referred to as the machine zero and the coordinate system having the machine zero as the origin is referred to as the machine coordinate system.

The machine zero is set for each individual machine using system parameters. Since the travel end limits and the home positions are set in the machine coordinate system, the user should not change the location of the machine zero at his/her own discretion. A cutting tool may not always be moved to the machine zero.
1-3. Work Coordinate System

The coordinate system used to machine workpieces is referred to as the work coordinate system.

- Work coordinate systems are established and stored with work coordinate system numbers in the memory before starting operation. The desired work coordinate system may be called at the start of machining.
- Work coordinate systems are set by specifying the distance from the machine zero to the origin of a work coordinate system as an offset value (work zero offset).
- For details, see SECTION 4, “Selection of Work Coordinate System” and SECTION 4, “Change of Work Coordinate System”.

1-4. Local Coordinate System

Programming the entire operation of a workpiece using only a work coordinate system may sometimes be difficult on some portions of the workpiece. In such cases, programming is facilitated by setting a new coordinate system appropriate for a specific workpiece portion.

The new coordinate system is referred to as a local coordinate system.

- The desired local coordinate system can be established by specifying the origin in reference to the origin of the presently selected work coordinate system and the angle of rotation on the specified plane about the origin of the local coordinate system to be set with G11. Once a local coordinate system has been established, all coordinate values are executed in the newly set local coordinate system.
- To change the local coordinate system to another one, the position of the origin of the new local coordinate system and the angle of rotation about the origin should be specified with G11. As explained above, a local coordinate system can be established only by specifying the coordinate values of the origin and the angle of rotation in a program.
- To designate coordinate values in the work coordinate system, cancel the local coordinate system by specifying G10.
- For details, refer to SECTION 4, “Parallel Shift and Rotation of Coordinate System”.

[Diagram showing coordinate systems and offsets]
2. COORDINATE COMMANDS

2-1. Numerically Controlled Axes

- The following table lists the addresses to be specified to control the axes.

<table>
<thead>
<tr>
<th>Address Contents</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addresses correponding to the three axes orthogonal to one another</td>
<td>X, Y, Z</td>
</tr>
<tr>
<td>Addresses of three orthogonal axes parallel to the basic axes</td>
<td>U, V, W</td>
</tr>
<tr>
<td>Addresses of rotary axis in a plane right angle to the basic axis</td>
<td>A, B, C</td>
</tr>
<tr>
<td>Addresses specifying distances, parallel to an individual axis, from a start point to the center of an arc</td>
<td>I, J, K</td>
</tr>
<tr>
<td>Addresses specifying the radius of an arc</td>
<td>R</td>
</tr>
</tbody>
</table>

- An axis movement command consists of an axis address, a sign indicating the direction of the axis movement, and a numeric value which describes the axis movement. Refer to “Absolute and Incremental Commands” for the designation of numeric values.

- In this manual, to simplify the explanation for axis designation, “Xp”, “Yp”, and “Zp” are used instead of the actual axis addresses. They represent the axis as follows:
 - Xp X-axis and the axis parallel to X-axis (U-axis)
 - Yp Y-axis and the axis parallel to Y-axis (V-axis)
 - Zp Z-axis and the axis parallel to Z-axis (W-axis)

- The maximum number of controllable axes is six. This capability varies depending on the NC model.

- The following table shows the number of simultaneously controllable axes in each of the axis movement modes.

<table>
<thead>
<tr>
<th>Axis Movement Mode</th>
<th>Number of Simultaneously Controllable Axes ("n" represents the number of controllable axes.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positioning</td>
<td>n</td>
</tr>
<tr>
<td>Linear interpolation</td>
<td>n</td>
</tr>
<tr>
<td>Circular interpolation</td>
<td>2</td>
</tr>
<tr>
<td>Helical cutting</td>
<td>3</td>
</tr>
<tr>
<td>Manual operation</td>
<td>1</td>
</tr>
<tr>
<td>Pulse handle operation</td>
<td>1</td>
</tr>
</tbody>
</table>

In pulse handle operation, the optional 3-axis control function is available.
The positive directions of the linear and rotary axes are defined as follows:

The definition of the coordinate axes and directions conforms to ISO R841.
ISO: International Organization of Standardization

2-2. Unit Systems

The unit systems that can be used in a program are described below. Note that the unit system selected for programming and the unit system used for setting data such as zero point, tool data, and parameters are independent of each other. The unit systems to be used for inputting the data are set at NC optional parameter (INPUT UNIT SYSTEM).

2-2-1. Minimum Input Unit

The minimum input unit is the smallest unit of a value that may be entered in a program. For a linear axis, the minimum input unit is 0.001 mm or 0.0001 inch. For the NC with metric / inch switchable specification, the unit system can be selected by the setting at LENGTH UNIT SYSTEM of NC optional parameter (INPUT UNIT SYSTEM). For a rotary axis, the minimum input unit is 0.001 degree or 0.0001 degree. Either 0.001 degree or 0.0001 degree can be selected by the setting at ANGLE of NC optional parameter (INPUT UNIT SYSTEM).

2-2-2. Basic Input Unit

The input unit may be changed to the “basic” unit by the setting at LENGTH of NC optional parameter (INPUT UNIT SYSTEM). The fundamental units are then 1 mm, 1 inch, 1 degree, and 1 second.
2-2-3. Numeric Values (inch / metric switchable as optional function)

As the unit for specifying program values, “mm”, “deg.”, “sec”, etc. are used. For these units, a decimal point may be used.

- Cautions on using a decimal point value
 a) A decimal point value must not be used for addresses O, N, G, and M.
 b) If a decimal point is not entered in a numeric value, the decimal point is assumed to exist at the end of the specified numeric value.
 c) If a value is set below the specified minimum input unit, the data is processed in the following manner.
 - For addresses S, T, H, D, Q, etc. that require integer type data, the value below the minimum input unit is truncated.
 - For addresses that use real data, the value below the minimum input unit is rounded.

- The input unit of dimension commands is determined by the setting at NC optional parameter (INPUT UNIT SYSTEM) or NC optional parameter (bit) No. 3, bit 0 to bit 7 and No. 4, bit 0. How these bits set the input unit is shown below.

- NC optional parameter (INPUT UNIT SYSTEM) screen
- NC optional parameter (bit) No. 3, bit 0 to bit 7 and No. 4, bit 0

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Bit No.</th>
<th>Contents</th>
<th>With Check Mark</th>
<th>Without Check Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 0</td>
<td></td>
<td>Sets the unit system of length, “inch” or “mm”. (*2)</td>
<td>inch</td>
<td>mm</td>
</tr>
<tr>
<td>1 1</td>
<td></td>
<td>Sets the unit of 1 mm, 1 inch, 1 deg., and 1 sec.</td>
<td>Unit of 1 mm, 1 inch, 1 deg., and 1 sec is selected.</td>
<td>Conforms to the setting for bit 2 to bit 5 and bit 7 of No. 3 and bit 0 of No. 4.</td>
</tr>
<tr>
<td>2 2</td>
<td></td>
<td>Sets unit of length, “0.01 mm” or “0.001 mm”.</td>
<td>0.01 mm</td>
<td>0.001 mm</td>
</tr>
<tr>
<td>3 3</td>
<td></td>
<td>Sets the unit of feedrate, 0.1 mm/min, 0.01 inch/min, or 1 mm/min, 0.1 inch/min</td>
<td>0.1 mm/min</td>
<td>0.1 mm/min</td>
</tr>
<tr>
<td>4 4</td>
<td></td>
<td>Sets the unit of feedrate, 0.001 mm/rev, 0.0001 inch/rev, or 0.01 mm/rev, 0.001 inch/rev</td>
<td>0.001 mm/rev</td>
<td>0.001 mm/rev</td>
</tr>
<tr>
<td>5 5</td>
<td></td>
<td>Sets the unit of time, “0.01 sec” or “0.1 sec”.</td>
<td>0.01 sec</td>
<td>0.1 sec</td>
</tr>
<tr>
<td>6 6</td>
<td></td>
<td>Sets the unit place at “1 mm”, “1 inch”, “1 deg”, and “1 sec” when decimal point input is selected.</td>
<td>Unit place is set at “1 mm”, “1 inch”, “1 deg”, and “1 sec”</td>
<td>Conforms to the setting for bit 1 to bit 5, and bit 7.</td>
</tr>
<tr>
<td>7 7</td>
<td></td>
<td>Sets the unit time, “0.001 sec” or “0.1 sec”.(*1)</td>
<td>0.001 sec</td>
<td>0.1 sec</td>
</tr>
<tr>
<td>4 40</td>
<td></td>
<td>Sets the unit of angle, “0.001 deg” or “0.0001 deg”.</td>
<td>0.0001 deg</td>
<td>0.001 deg</td>
</tr>
</tbody>
</table>

*1: The unit of time is always “0.01 sec” if “1” is set for bit 5.
*2: The setting for bit 0 is valid only when the inch/mm switchable specification is selected.

- Examples of parameter setting are given below.

<table>
<thead>
<tr>
<th>No.4</th>
<th>Parameter Bit No.3</th>
<th>Length (mm)</th>
<th>Angle (°)</th>
<th>Feedrate (mm/min)</th>
<th>Feedrate (mm/rev)</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>* *</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>O O</td>
<td>0.001</td>
<td>0.001</td>
<td>1</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>O O</td>
<td>0.01</td>
<td>0.001</td>
<td>1</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>O O</td>
<td>0.001</td>
<td>0.001</td>
<td>0.1</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>O O</td>
<td>0.001</td>
<td>0.0001</td>
<td>1</td>
<td>0.001</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>O O</td>
<td>0.001</td>
<td>0.001</td>
<td>0.1</td>
<td>0.001</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>O O</td>
<td>0.001</td>
<td>0.001</td>
<td>1</td>
<td>0.001</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.4</th>
<th>Parameter Bit No.3</th>
<th>Length (inch)</th>
<th>Angle (°)</th>
<th>Feedrate (inch/min)</th>
<th>Feedrate (inch/rev)</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>* *</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>O O</td>
<td>0.001</td>
<td>0.001</td>
<td>0.1</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>O O</td>
<td>0.001</td>
<td>0.001</td>
<td>0.01</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>O O</td>
<td>0.001</td>
<td>0.001</td>
<td>0.1</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>O O</td>
<td>0.001</td>
<td>0.001</td>
<td>0.1</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>O O</td>
<td>0.001</td>
<td>0.001</td>
<td>0.1</td>
<td>0.01</td>
<td>0.1</td>
</tr>
</tbody>
</table>

An asterisk (*) in the table indicates setting of “0” or “1” is allowed.

- µm / mm unit system
The unit system that handles the data in units of mm (inch) for real data and in units of microns (1/10000 inch) is called the “µm / mm unit system”. For this unit system, the unit is determined
depending on whether or not a decimal point is used in the data when YES is selected at REAL NUMBER of NC optional parameter (INPUT UNIT SYSTEM). If a decimal point is used, the unit of “mm (inch)” is set and if a decimal point is not used, the unit of “microns (1/10000 inch)” is set.

Example 1:

X100. → 100mm
X100 → 100µm

If an expression or a variable is used for the command of this unit system, the values are always treated as real data.

Example 2: Local variables

PX = 100
X = PX → 100mm

PX = 100.
X = PX → 100µm

(The value is not “100 µm”.)
The following is a comparison how a numeric value is interpreted according to whether or not a decimal point is used when “µm / mm unit system” is selected.

<table>
<thead>
<tr>
<th>Command Element</th>
<th>Value</th>
<th>“mm unit system” element</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 100</td>
<td>100 µm</td>
<td>–</td>
</tr>
<tr>
<td>X= 100</td>
<td>100 µm</td>
<td>–</td>
</tr>
<tr>
<td>X 100.</td>
<td>100 mm</td>
<td>Decimal point</td>
</tr>
<tr>
<td>X= 100.</td>
<td>100 mm</td>
<td>Decimal point</td>
</tr>
<tr>
<td>X 100+100</td>
<td>200 mm</td>
<td>Expression</td>
</tr>
<tr>
<td>X= 100.+100</td>
<td>200 mm</td>
<td>Expression</td>
</tr>
<tr>
<td>X 100+100.</td>
<td>200 mm</td>
<td>Expression</td>
</tr>
<tr>
<td>X 100+100*2</td>
<td>300 mm</td>
<td>Expression</td>
</tr>
<tr>
<td>X= 100+100*2</td>
<td>300 mm</td>
<td>Expression</td>
</tr>
<tr>
<td>X= 100+100*2.5</td>
<td>350 mm</td>
<td>Expression</td>
</tr>
<tr>
<td>PK= 100</td>
<td>100 mm</td>
<td>Variable</td>
</tr>
<tr>
<td>X= 100+PK</td>
<td>200 mm</td>
<td>Variable</td>
</tr>
<tr>
<td>PK= 100.</td>
<td>100 mm</td>
<td>Variable</td>
</tr>
<tr>
<td>X= 200-PK</td>
<td>100 mm</td>
<td>Variable</td>
</tr>
<tr>
<td>X= 200-100</td>
<td>100 mm</td>
<td>Expression</td>
</tr>
<tr>
<td>X -100</td>
<td>100 µm</td>
<td>–</td>
</tr>
<tr>
<td>X -100.</td>
<td>-100 mm</td>
<td>Decimal point</td>
</tr>
<tr>
<td>X +100</td>
<td>100 m</td>
<td>–</td>
</tr>
<tr>
<td>X +100.</td>
<td>100 mm</td>
<td>Decimal point</td>
</tr>
<tr>
<td>X= ROUND[100]</td>
<td>100 mm (*1)</td>
<td>Expression</td>
</tr>
<tr>
<td>X= FIX[100.]</td>
<td>100 mm (*1)</td>
<td>Expression</td>
</tr>
<tr>
<td>X= FUP[-100]</td>
<td>-100 mm (*1)</td>
<td>Expression</td>
</tr>
<tr>
<td>X= ROUND[100.]</td>
<td>100 µm (*2)</td>
<td>–</td>
</tr>
<tr>
<td>X= FIX[100.]</td>
<td>100 µm (*2)</td>
<td>–</td>
</tr>
<tr>
<td>X= FUP[-100.]</td>
<td>-100 µm (*2)</td>
<td>–</td>
</tr>
<tr>
<td>LA1=4</td>
<td>F=FIX[LA1]</td>
<td>4 mm/min</td>
</tr>
</tbody>
</table>

* 1. Decimal point is selected for designation of ROUND/FIX/FUP real number command.
* 2. Integer is selected for designation of ROUND/FIX/FUP real number command.
2-3. **Travel Limit Commands (G22, G23) (Optional)**

Since the NC is equipped with absolute position encoders, it is possible to set the travel limit with the software. That is, if the travel limit is set as an absolute value by the software, the limit switch usually used to detect the travel limit may not be used. If the travel limit is set in this manner, it is possible to change the travel limit position by changing the travel limit value in a program. Note that two types of travel limit, one set by the manufacturer (factory-set travel limit) and the other set by the user (user-set travel limit), are provided.

(1) **Factory-Set Travel Limit (Soft-Limit)**

- The travel limit is set in accordance with the maximum travel distance from the machine zero of each axis. The travel limits are set both in the positive (P) and negative (N) directions using the system parameters.
- The area inside of the set values (from the N direction travel limit to the P direction travel limit) is available for operation (operation permitted area). The outside area is called the operation inhibited area and axis movements into this area are not allowed.
- The travel limit function always monitors the programmed tool path. If the tool path enters the operation inhibited area, even if the end point lies in the operation permitted area, this function disables the tool movement.

(2) **User-Set Travel Limit (Programmable Limit) (Optional)**

The travel limit may be set by the user either with user parameters or by programs using the programmable travel limit function. Since both settings (user parameter and programmed command) establish an identical area and since the data is stored in the same area, the data entered last becomes the valid data, updating the previously set data. For example, when the travel limits are set using a program after setting them with the user parameters, the travel limit setting data is replaced with the data set for the user parameters. When setting the travel limits, both positive (P) and negative (N) direction limit data must be set. The area between the P and N travel limits is defined as the operation permitted area and that outside the travel limits is defined as the operation inhibited area.

- Setting the travel limits by a program
The numeric values entered are processed as coordinate values in the work coordinate system.

“α”, “β”, and “γ” above do not represent an address. In actual programming, use axis addresses of the 4th to 6th axis (A, B, C, U, V, and W).

[Details]

- An alarm occurs if the command indicated above is executed for the machine equipped with a multi-turn type rotary axis.
- The data set using G22 is backed up and is therefore valid even after the power is turned off.
- If the setting data is outside the factory-set soft limits, an alarm will occur.
- Which of the travel limits - the limits set with the system parameters (soft-limit) or the limits set with user parameters or by a program (programmable limits) - becomes valid as the operation permitted area can be set by specifying an appropriate G code.
 - G22: Selects the travel limits set with user parameters or those newly set by G22 are as the travel limits and checks the program according to the selected operation permitted area.
 - G23: Cancels the G22 mode and selects the travel limits set with the system parameters. The program is checked according to the selected operation permitted area.
- If G22 is specified independently, the programmable limit values set with user parameters become valid.
- For setting the travel limits with user parameters, refer to User Parameter, SECTION 4 PARAMETER in III DATA OPERATION of OPERATION MANUAL.
- The programmed tool path is checked for entry into the operation inhibited area even if the end point lies inside the operation permitted area.
2-4. **Home Position Command (G30)**

[Function]
The term “home position” refers to a particular position that can be set for individual machines. The home position command is used to move the axes to the preset home position. The home position is used as the tool change position or the pallet change position.

[Programming format]

G30 P__

P: Home position number. Up to 32 home positions may be set.

Home positions are set with coordinate values in the machine coordinate system using system parameters.

CAUTION

The operating sequence of the axes to move to the home position and the position of the home position are determined by the machine tool builder and differ according to machine. Before operating the machine, you must thoroughly understand the axis operating sequence and the position of the home position for each home position number.

For details on home positions, refer to SECTION 4 PARAMETER in III DATA OPERATION of OPERATION MANUAL.

How the individual axes move to the home position is determined according to the setting for NC optional parameter (bit) No. 46, bit 2, whether the path is generated along a straight line (linear interpolation mode) or not.

NOTICE

After the execution of a home position command, it is necessary to execute positioning for all axes in the G90 mode (absolute command) before starting the next operation.
2-5. **Absolute and Incremental Commands (G90, G91)**

For the designation of axis movement distance, two types of commands (absolute commands, incremental commands) are available.

1. **Absolute Commands**
 - G90 specifies the absolute dimensioning mode.
 - In this mode, the coordinate values in the selected work coordinate system are used to specify the movement of axes.

2. **Incremental Commands**
 - G91 specifies the incremental dimensioning mode.
 - In this mode, the axis movement distance from the current position to the target position is used to specify the movement of axes.

[Details]
- It is not permissible to specify G90 and G91 in the same block.
- Either G90 or G91 is always valid.
- Which of G90 and G91 is made valid when the power is turned ON or when the NC is reset is determined by the setting for a parameter (NC optional parameter (bit) No. 18, bit 4).
- When an incremental command needs to be designated right after the completion of a fixed cycle, specify the movement of the cycle axis of the fixed cycle in the absolute mode before specifying incremental commands.

- After executing a command such as G15, G16, or G92 that changes a coordinate system, it is necessary to execute positioning in the G90 mode for all axes. (After changing the coordinate system, a coordinate system must be established using absolute commands.)
SECTION 3 FEED FUNCTIONS

1. Rapid Feed

In the rapid feed mode, each of the axes moves at the specified rapid feedrate independently of other axes that are moved at the same time. Note that rapid feedrate differs depending on the machine specification. Consequently, the individual axes arrive at the target point at different times. Override is possible.

2. Cutting Feed

2-1. Feed per Minute (G94)

[Function]
This function sets the feedrate per minute of a cutting tool with a numeric value following address “F”.

[Programming format]
G94

Setting unit:
Selection is possible from among 1 mm/min, 0.1 mm/min, 1 inch/min, 0.1 inch/min and 0.01 inch/min by setting NC optional parameter (INPUT UNIT SYSTEM).
Setting range: 0.1 ~ 24000.0 mm/min, 0.01 ~ 2400.00 inch/min

[Details]
- The allowable maximum feedrate that is called the “clamp feedrate” is set with NC optional parameter (long word) No. 10. If an axis is going to move beyond this limit, its feedrate is clamped at this clamp feedrate and the following alarm message is displayed at the alarm display line on the screen.
 4204 ALARM-D Feedrate command limit over (replacing)
- The programmed feedrate can be overridden. The clamp feedrate is applied to the actual feedrate, or the overridden feedrate.

2-2. Feed per Revolution (G95)

[Function]
This function sets the feedrate per revolution of a cutting tool with a numeric value following address “F”.

[Programming format]
G95

Setting unit:
Selection is possible from among 1 mm/rev, 0.01 mm/rev, 0.001 mm/rev, 1 inch/rev, 0.001 inch/rev or 0.0001 inch/rev by setting NC optional parameter (INPUT UNIT SYSTEM).
Setting range: 0.001 ~ 500.000 mm/rev, 0.0001 ~ 50.000 inch

[Details]
- Since the clamp feedrate is set in units of “mm/min” it is converted into a value in “mm/rev” units using the following formula:
 \[fm = fr \times N \]
 where,
 \(N \) = spindle speed (rpm)
 \(fm \) = feedrate (mm/rev)
 \(fr \) = feedrate (mm/rev)
2-3. **F1-digit Feed Function (Optional)**

The F1-digit feed function has two types of control:

Switch-type control:
In a program, feedrate commands are written with F1 to F8 and the actual feedrate is set with the corresponding setting switches (up to 8 sets) provided on the machine operation panel.

Parameter-type control:
The feedrate commands are written in a program in the same manner as with the switch-type control. Actual feedrates are set for 9 sets of parameters F1 through F9.

For details of feedrate setting procedure for the parameter-type control, refer to the SECTION 11 F1-digit Feed Command Function in Special Functions Manual.

- F1-digit feed designation is distinguished from F4-digit feed designation as follows.
 1. **F1-digit Feed**
 - Switch-type control: An integer in the range of 1 to 8
 - Parameter-type control: An integer in the range of 1 to 9
 2. **F4-digit Feed**
 - If a real number (including a variable) is specified following address F (F1, for example), the feedrate command is interpreted as an F4-digit command. Therefore, for the F1-digit feed function, a variable cannot be used to specify 1 to 8 (for switch-type control) or 1 to 9 (for parameter-type control).

Examples:

```
F1  The feedrate is determined by the setting of rotary switch F1.
F5. Feedrate = 5 mm/min
    LA1 = 8  Feedrate = 8 mm/min
    F = LA1
```

- The selected feedrate code (F1 to F8 in the case of switch-type control and F1 to F9 in the case of parameter-type control) is not cleared even when the NC is reset. It is cleared if an F4-digit command is specified or when power is turned OFF and then back ON.
- A feedrate override setting is invalid if a feedrate is specified by an F1-digit feedrate command.
- If an F1-digit feedrate command is specified in the G95 mode (feed per revolution), an alarm occurs.
3. **Exact Stop Check Function (G09, G61, G64)**

[Function]
- During axis feed control, the calculated value always precedes the actual value when an axis is moving to the target point. Therefore, if the calculated value is at the target point, the actual value is behind the calculated value and is not at the target position. If the next block is executed at the time the calculated value reaches the target point, the actual position follows the calculated value, causing the tool path to stray from the programmed path at the join between two blocks.
- The exact stop function successfully eliminates errors caused by the axis control indicated above. With the exact stop function, operation for the next block does not start until the actual value arrives at the target point even if the operation of the current block has completed, so that the tool path exactly follows the programmed path.

The state where the current position has reached the target point is referred to as the "in-position" state. To establish the in-position state, the target point is defined with a band that is set using a system parameter.

- The exact stop check mode may be either one-shot (valid only for a programmed block) or modal, as explained in the following.
 Note that in the positioning mode (G00, G60), an exact stop check is always executed regardless of whether or not an exact stop check G code is specified.

[Programming format]
- One-shot exact stop check command: G09 IP
 Exact stop check is executed only in the specified block.
- Modal exact stop check command: G61 IP__
 Exact stop check is executed for all blocks until a cutting mode (G64) is specified.
- Cutting mode (cancel G61): G64 IP__
 At a join between blocks containing cutting commands, the commands in the next block are executed immediately so that axis movements will not be decelerated at the join.
 Even in the cutting mode, however, an exact stop check is executed in the positioning mode (G00, G60) or in a block containing the one-shot exact stop command (G09).
 An exact stop check is also executed at blocks where cutting feed does not continue.
4. **Automatic Acceleration and Deceleration**

At the start and end of axis movements, axis feedrate is automatically accelerated and decelerated.

1. **Automatic Acceleration/Deceleration in Positioning Mode / Manual Feed Mode**
 Axis feed is accelerated and decelerated in a linear pattern as shown below.

 ![Linear Pattern Graph](image1)

2. **Automatic Acceleration/Deceleration in the Cutting Feed Mode (G01, G02, G03)**
 In the cutting feed mode, axis feed is automatically accelerated and decelerated in the appropriate pattern as shown below.

 ![Linear Pattern Graph](image2)

3. **Processing Between Blocks**

<table>
<thead>
<tr>
<th>Type of New Block</th>
<th>Type of Old Block</th>
<th>Positioning</th>
<th>Cutting Feed</th>
<th>No Axis Movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positioning</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Cutting Feed</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>No axis movement</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

 O: Program advances to the next block after executing the in-position check.
 X: Program advances to the next block without executing the in-position check.

 The term “in-position check” indicates the check if the actual axis position is within a predetermined width from the specified coordinate value. The in-position width is set for a system parameter.

4. **Exact Stop (G61, G09)**
 As indicated in the table above, since in-position check is not performed when cutting feed blocks continue, the join between cutting feed blocks will be dulled or rounded. The exact stop function prevents the join between such blocks from being dulled or rounded. For details, refer to SECTION 3, “Exact Stop Check”.
5. Following Error Check

Following error is defined as the difference between the command value output from the NC and the output of the position encoder. A DIFF over alarm occurs if a following error exceeds a certain value during rapid feed or cutting feed of an axis.
6. Positioning (G00)

[Function]
The axes move from the present position to the target position at rapid feedrate. During this movement, axes are automatically accelerated and decelerated.

[Programming format]
G00 IP__

In the positioning operation executed in the G00 mode, in-position check is executed. The commands in the next block are executed only after the in-position state is confirmed (in-position width is set for a system parameter).

[Details]
- Whether positioning is executed in the linear pattern or a non-linear pattern is determined by the setting for NC optional parameter (bit) No. 46, bit 0.
 a) Linear interpolation pattern
 The tool path is generated along a straight line from the actual position to the target position. In this movement, the feedrates of the individual axes are determined within the individual rapid feedrates so that positioning time can be minimized.

 ![Diagram of Linear Interpolation Pattern](image1)

 b) Non-linear interpolation pattern
 The individual axes move independently of each other at the individual rapid feedrates. Therefore, the resultant tool path is not always a straight line.

 ![Diagram of Non-linear Interpolation Pattern](image2)

- The rapid feedrate of the individual axes is set by the machine tool builder and cannot be changed.
- The in-position range is set for each axis using system parameters.
7. Uni-directional Positioning (G60)

[Function]

- In the positioning called by G00, positional error is unavoidable if positioning is executed in different directions due to backlash in the axis feed mechanism. If positioning is always executed in the same direction, the influence of backlash is eliminated and therefore high positioning accuracy can be obtained. The function to always execute positioning in the same direction is called the unidirectional positioning function.

- If the positioning is going to be executed in the direction opposite to the direction set at positioning direction of NC optional parameter (uni-directional positioning), the axis passes over the target point once and then moves back to the target point. The amount by which the axis passes beyond the target point (overrun amount) is set at either G60 overrun amount of NC optional parameter (uni-directional positioning) or user parameter.

[Programming format]

G60 IP__

[Details]

- When the linear interpolation mode positioning specification is provided, whether or not the positioning is executed in the linear interpolation pattern is determined by the setting for NC optional parameter (bit) No. 46, bit 1.

- If the direction of the specified positioning agrees with the positioning direction set at positioning direction of NC optional parameter (uni-directional positioning), the axis does not pass over the end point.

- G60 is a modal command.
• Uni-directional positioning is not valid for a cycle axis or shift movement in a fixed cycle.
• Uni-directional positioning is not valid on an axis for which no pass-over amount is set.
• Mirror image is not applied to the positioning direction.

8. **Linear Interpolation (G01)**

[Function]
In the G01 linear interpolation mode, axes move directly from the actual position to the specified target point at the specified feedrate.

[Programming format]
G01 IP__F__
IP: Target point (end point)
F: Feedrate. The specified feedrate remains valid until updated by another value.

[Details]
• A feedrate value specified with address “F” is cleared to zero when the NC is reset. Note that the F command value is saved when the NC is reset if a feedrate is specified in an F1-digit command.
• The feedrate for each axis is as indicated below. (For values X, Y, and Z, convert them into an incremental value.)

\[
\begin{align*}
X \text{-axis feedrate: } & \quad FX = \frac{x}{L} \cdot f \\
Y \text{-axis feedrate: } & \quad FY = \frac{y}{L} \cdot f \\
Z \text{-axis feedrate: } & \quad FZ = \frac{z}{L} \cdot f
\end{align*}
\]

Where, \(L = \sqrt{x^2+y^2+z^2} \)

For the rotary axis, the unit of feedrate is regarded as indicated below:
1 mm/min = 1 deg/min
1 inch/min = 1 deg/min

In linear interpolation including a rotary axis, the feedrates are determined according to the formulas given above for the individual axes.

Example:
G91 G01 X10 C20 F30.0

<"mm" input>

\[
\begin{align*}
\text{X-axis feedrate} & = \frac{10}{\sqrt{10^2+20^2}} \times 30 \quad 13.41 \text{ mm/min} \\
\text{C-axis feedrate} & = \frac{20}{\sqrt{10^2+20^2}} \times 30 \quad 26.83 \text{ deg/min}
\end{align*}
\]
In the inch system, it is possible to specify whether “F1” is interpreted as 1 deg/min or as 25.4 deg/min by the setting for NC optional parameter (bit) No. 15, bit 7.

9. Plane Selection (G17, G18, G19)

[Function]
Selecting a plane is necessary in order to perform the following functions:

- Circular interpolation (Helical cutting)
- Angle command (AG)
- Cutter radius compensation
- Coordinate rotation (Local coordinate system)
- Fixed cycle
- Coordinate calculation
- Area machining

The planes that can be selected are indicated below:

- **G17**: Xp-Yp plane
- **G18**: Zp-Xp plane
- **G19**: Yp-Zp plane

Xp

Yp

Zp

X- or U-axis.

Y- or V-axis.

Z- or W-axis.

[Programming format]

- **G17** Xp Yp
- **G18** Zp Xp
- **G19** Yp Zp

[Details]

- Whether a basic axis (X, Y, Z) or a parallel axis (U, V, W) is selected is determined by the axis addresses specified in the block containing G17, G18 or G19.
Examples:

G17 X _ Y _ XY plane
G17 U _ Y _ UY plane
G18 Z _ X _ ZX plane
G18 W _ X _ WX plane
G19 Y _ Z _ YZ plane
G19 Y _ W _ YW plane

• In blocks where none of G17, G18, and G19 are specified, the selected plane remains unchanged even if axis addresses are changed.

• In blocks where G17, G18, or G19 is specified, if an axis address is omitted, the basic axis (X, Y, Z) is assumed to be omitted.

Examples:

G17 _ XY plane
G17 X _ XY plane
G17 U _ UY plane
G18 _ ZX plane
G18 W _ WX plane

• If a command is specified for an axis that does not exist in the selected plane, the programmed command will nonetheless be executed as programmed, and the selected plane will be temporarily ignored.

• The plane to be selected when the power is turned ON or the NC is reset can be designated by the setting at THE G CODE TO BE SET AUTOMATICALLY (PLANE) of the NC optional parameter (AUTO SET AT NC RESET/POWER ON).

• An alarm occurs if both the basic axis and its parallel axis are specified in a plane selection block.
10. Circular Interpolation (G02, G03)

[Function]
The circular interpolation function moves a tool from the actual position to the specified position along an arc at the specified feedrate.

[Programming format]

Arc on Xp-Yp plane : G17 \(\begin{align*} \text{G02} \quad & \text{Xp} \quad \text{Yp} \quad \{ \text{R}_{i,j} \} \quad \text{F} \quad \end{align*} \)

Arc on Zp-Xp plane : G18 \(\begin{align*} \text{G02} \quad & \text{Zp} \quad \text{Xp} \quad \{ \text{R}_{k,l} \} \quad \text{F} \quad \end{align*} \)

Arc on Yp-Zp plane : G19 \(\begin{align*} \text{G02} \quad & \text{Yp} \quad \text{Zp} \quad \{ \text{R}_{j,k} \} \quad \text{F} \quad \end{align*} \)

Xp = X-axis or U-axis
Yp = Y-axis or V-axis
Zp = Z-axis or W-axis

- G codes used for the circular interpolation function are indicated below.
 - G17 : Plane selection
 Sets the circular arc in the Xp-Yp plane.
 - G18 : Plane selection
 Sets the circular arc in the Zp-Xp plane.
 - G19 : Plane selection
 Sets the circular arc in the Yp-Zp plane.
 - G02 : Direction of rotation
 Sets the clockwise direction.
 - G03 : Direction of rotation
 Sets the counterclockwise direction.

Two axes among Xp, Yp, and Zp, G90 mode:
Sets the end point in the work coordinate system

Two axes among Xp, Yp, and Zp, G91 mode:
Sets the position in reference to the start point with signed values.

Two axes among I, J, and K:
Sets the distance from the start point to the center with signed values.

R: Sets the radius of an arc.
F: Sets the feedrate.

[Details]

- Direction of rotation, clockwise or counterclockwise, is defined when viewing the plane from the positive direction of the Zp-axis (Yp-axis, Xp-axis) on the Xp-Yp (Zp-Xp, Yp-Zp) plane, as shown in the illustrations below.

- The end point is defined by either an absolute value or an incremental value according to G90 or G91.
• The center point of an arc is determined by the I, J, and K values which correspond to Xp, Yp, and Zp, respectively. Their coordinate values are always specified as incremental values, regardless of G90 or G91.

A minus sign should be used for the I, J, and K values when necessary.

• The end point of an arc can be designated by specifying the coordinate value on one of the two axes.

If only one axis is specified, the processing may be selected from the following two methods.

a) For the omitted axis, the previous command value is used as the end point of the arc. For this processing, set "0" for NC optional parameter (bit) No. 20, bit 1.

When programming an arc as illustrated to the left, the end point of the arc can be designated with only the coordinate value of the horizontal axis, since the coordinate value of the vertical axis is the same at the start and end points. An alarm occurs if the end point does not lie on an arc. The left program defines a clockwise arc:

Radius: 100
Center: (0, 0)
Start point: (-70.711, -70.711)
End point: (70.711, -70.711)

ex: X -70.711, Y -70.711
G02 X70.711 I70.711 J70.711
G03

X -70.711, Y -70.711
G02 X10 I70.711 J70.711

The left program will cause an alarm, since the end point (10, -70.711) is not on the arc.

b) For the omitted axis, the coordinate value is calculated using the coordinate value of the specified axis. For this processing, choose point on arc at command value for the axis not programmed (single-axis) of NC optional parameter (circular interpolation).

When programming an arc as illustrated in the left, the end point can be designated with only the horizontal axis coordinate value. The vertical axis coordinate value is calculated from the horizontal axis coordinate value.

• If more than one end point is possible, the one which is reached first in the designated arc direction is selected.
The operations explained above also apply when designation of a vertical axis is omitted.

- The center of an arc can be defined by specifying the radius (R) of the arc instead of specifying I, J, and K. If an arc is specified by the radius, four arcs that pass the same start and end points are defined. To define a specific arc from among these four arcs, an R value is used in the manner indicated below.
 - Clockwise arc (G02)
 An arc whose central angle is smaller than or equal to 180 degrees: Radius R > 0
 An arc whose central angle is greater than 180 degrees: Radius R < 0
 - Counterclockwise arc (G03)
 An arc whose central angle is smaller than or equal to 180 degrees: Radius R > 0
 An arc whose central angle is greater than 180 degrees: Radius R < 0

The program to the left defines a clockwise arc:

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-70.711 Y-70.711 F200</td>
<td>Radius: 100</td>
</tr>
<tr>
<td>G02 X10 I70.711 J70.711</td>
<td>Center: (0, 0)</td>
</tr>
<tr>
<td></td>
<td>Start point: (-70.711, -70.711)</td>
</tr>
<tr>
<td></td>
<td>End point: (10,99.499)</td>
</tr>
</tbody>
</table>

- The feedrate in circular interpolation is the feedrate component tangential to the arc.

[Supplement]
- If I, J, or K is omitted, it is regarded that “0” is specified.
- An arc with radius 0 (R = 0) cannot be specified.
- If the values for Xp, Yp, and Zp are omitted, an arc having the start and end points on the same point is defined in the following manner:
 a) If the center is specified by I, J, and/or K, a 360-degree arc
 b) If the radius is specified by R, a 0-degree arc
- It is not possible to specify R, and I, J, and K at the same time.
- It is not possible to specify any axis parallel to the axes which make up the selected plane. For example, designation of the W-axis is not allowed when the Z-X plane is selected.
- An alarm will occur if the difference in radius between the start point and the end point of an arc is greater than or equal to the value set at arc check data (difference in radius between start and end) of the NC optional parameter (circular interpolation).
11. **Helical Cutting (G02, G03) (Optional)**

[Function]
Helical cutting or helical interpolation may be executed by synchronizing circular interpolation with linear interpolation of the axis which intersects at right angles the plane in which the arc is defined.

[Programming format]

\[
\text{XpYp plane : G17} \left(\begin{array}{l}
G02 \\
G03
\end{array} \right) \text{Xp_Yp}_{\text{R}_I_J} \text{ } \alpha_{\text{F}} \\
\alpha : \text{An axis not parallel to the axes comprising the arc plane}
\]

[Details]
- Helical cutting may also be programmed on the Zp-Xp (G18) and Yp-Zp (G19) planes, using a format similar to that above.
- To program helical cutting, simply add the command of the axis which intersects the arc plane to the circular interpolation.
- Helical cutting is possible for an arc having a center angle of smaller than 360 degrees.
- The feedrate specified by an F command is valid for circular interpolation. Therefore, the feedrate in the direction of the linear axis is calculated by the following formula:

\[
\text{Feedrate in the linear axis direction} = \frac{\text{Motion distance of the linear axis}}{\text{Arc length}} \times F
\]

- Tool length offset is valid for the axis at right angles to the arc plane.
- Cutter radius compensation is valid only for circular interpolation commands.
SECTION 4 PREPARATORY FUNCTIONS

G codes consisting of address character G and a three-digit number (00 to 399) set the mode that specifies how the commands are executed. Instead of using address character G, some G codes are expressed by mnemonics. A mnemonic code consists of up to eight alphabetic characters (A to Z).

- Valid range of G codes
 - One-shot G codes: Valid only in the specified block. Such G codes are automatically canceled when a program advances to the next block.
 - Modal G codes: Once specified, such G codes remain valid until another G code in the same group is specified.

- Special G codes
 Mnemonic codes used for subprogram call and those used as branch instructions are called special G codes.
 Special G codes must be specified at the beginning of a block and entry of such codes at a middle of a block is not allowed. Note, however, that a slash “/” code (optional block skip code) or a sequence name may be placed before a special G code.

- For the tables of G codes and mnemonic codes, refer to “G Code Table” and “Table of Mnemonic Codes” in APPENDIX.

1. Dwell Command (G04)

[Function]
At the end of the specified block, the dwell function suspends the execution of a program for the specified length of time before proceeding to the next block.

[Programming format]
The following two programming formats may be used to specify the dwell function.

- G04 F__
 F: Sets the length of dwell time
 The unit of dwell time can be selected from 1, 0.1, 0.01 and 0.001 seconds by the NC optional parameter (INPUT UNIT SYSTEM).
 The maximum programmable dwell time is 99999.999 seconds.

- G04 P__
 P: Sets the length of dwell time
 The unit of dwell time is selected in the same manner as when specified by F.
2. Programmable Mirror Image (G62) (Optional)

[Function]
The mirror image function creates a geometry which is symmetric around a specific axis. In addition to the mirror image switch on the machine panel, the programmable image function creates mirror images using programmed commands. The axis which is in the mirror image mode is identified on the screen display; a dash “-” is added before the axis name on the ACTUAL POSITION screen.

[Programming format]

G62 IP

0 : Normal (Mirror image OFF)
1 : Mirror image

[Details]

- The actual state of the mirror image function based on the specification of G62 and the MIRROR IMAGE switch setting is displayed in the table below.

<table>
<thead>
<tr>
<th>G62</th>
<th>Switch Setting</th>
<th>Actual State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Normal</td>
<td>Mirror image</td>
<td>Mirror image</td>
</tr>
<tr>
<td>Mirror image</td>
<td>Normal</td>
<td>Mirror image</td>
</tr>
<tr>
<td>Mirror image</td>
<td>Mirror image</td>
<td>Normal</td>
</tr>
</tbody>
</table>

- A block in which G62 is specified must not contain any other commands.
- The mirror image function is modal.
- The axes not specified in the G62 block are assumed to be in the normal mode.
- All axes are in the normal mode when the power supply is turned on.
- Whether all axes will be set in the normal mode or not when the NC is reset can be set at AT AN NC RESET, CLEARS THE G62 MIRROR IMAGE FOR ALL AXES of NC optional parameter (MIRROR IMAGE).
- The coordinate system (local or work) in which the mirror image function will be active can be selected at local/work coordinate system select of NC optional parameter (MIRROR IMAGE).

Example:

G11 X40 Y10 P45

G01 X5 Y5 S__F__

X30 Y5 Y30 Y5

G62 X1
(1) If work is selected at local/work coordinate system select of NC optional parameter (MIRROR IMAGE)

X - Y : Work coordinate system
X' - Y' : Local coordinate system

(2) If local is selected at local/work coordinate system of NC optional parameter (MIRROR IMAGE)
3. **Work Coordinate System Selection (G15, G16)**

[Function]
20 sets of work coordinate systems are supplied as a standard feature and this can be expanded to 50, 100 or 200 sets optionally.

[Programming format]
Modal G code: G15 Hn (0 ≤ n ≤ 200)
Once a new work coordinate system "n" is set using the modal G code, the coordinate values specified in the same and later blocks are interpreted as coordinate values in the selected work coordinate system "n".
One-shot G code: G16 Hn (0 ≤ n ≤ 200)
If a new work coordinate system "n" is set using the one-shot G code, only the coordinate values specified in the same block are interpreted as coordinate values in the selected work coordinate system "n".

[Details]
- The work coordinate system number between 1 and 200 is specified by "n" (1 to 200). If “0” is specified for “n”, the machine coordinate system is selected.
- When the power supply is turned ON, and after the NC is reset, the work coordinate system previously selected by G15 is automatically selected.
- G15 and G16 may not be specified in the following modes:
 - Cutter radius compensation mode
 - Three-dimensional offset mode
 - Geometry enlargement/reduction mode
 - Coordinate system parallel shift/rotation mode

⚠️ **CAUTION**
Axis feed commands specified immediately after G15 must be specified in the absolute mode.
4. **Work Coordinate System Change (G92)**

[Function]
The work coordinate system change function changes the work coordinate system.

[Programming format]
G92 IP__

[Details]
- G92 automatically changes the work zero offset value of the presently selected work coordinate system so that the coordinate value of the present tool position will be the coordinate value specified as IP__.
- G92 changes only the work coordinate system that is selected at the time it is executed; it does not affect any other work coordinate systems.
- The coordinate value IP__ specified in this block is always treated as an absolute value regardless of the specification of G90 (absolute mode) and G91 (incremental mode).
- For the axis not specified with the coordinate value P, the work zero offset value remains unchanged.
- G92 may not be specified in the following modes:
 - Cutter radius compensation mode
 - Three-dimensional offset mode
 - Geometry enlargement/reduction mode
 - Coordinate system parallel shift/rotation mode
 - Machine coordinate system selected mode

5. **Unit System Check (G20, G21) (Optional)**

[Function]
The unit system check function checks the unit system selected by the setting at LENGTH UNIT SYSTEM of NC optional parameter (INPUT UNIT SYSTEM). If the selected system does not agree with the unit system specified by G20 / G21, an alarm occurs.

[Programming format]
G20: Checking for the selection of the inch system
An alarm occurs if the metric system is selected by the setting for the parameter.

G21: Checking for the selection of the metric system
An alarm occurs if the inch system is selected by the setting for the parameter.
6. Coordinate System Conversion Functions (Optional)

6-1. Parallel Shift and Rotation of Coordinate Systems (G11, G10)

[Function]
The parallel shift / rotation function shifts or rotates a work coordinate system. The new coordinate system defined by shifting or rotating a work coordinate system is called a local coordinate system. It is possible to cancel a local coordinate system.

[Programming format]
Parallel shift / rotation of coordinate system: G11 IP__ P__

IP: Parallel shift amount to establish a local coordinate system
Specify the shift amount as an absolute value in reference to the origin of the presently selected work coordinate system, regardless of the selected dimensioning mode (G90, G91) or the mirror image state.

P: Rotation amount to establish a local coordinate system
Specify the angle of rotation in units of 1 degree, 0.001 degree, or 0.0001 degree in accordance with the selected unit system (LENGTH UNIT SYSTEM and ANGLE of NC optional parameter (INPUT UNIT SYSTEM)).
If "P0" is specified or a P command is not specified, only work coordinate system shift takes place, without rotation.
Rotation of a work coordinate system is executed in the plane (G17, G18, G19) that is active when G11 is specified, and it does not affect the axes not included in this plane. The direction of rotation is counterclockwise viewed from the positive direction of the axis not included in the rotation plane.
Specify the angle of rotation as an absolute value, regardless of the selected dimensioning mode (G90, G91).

• Cancellation of local coordinate system: G10
When G10 is specified, the parallel shift amount and angle of rotation are canceled.

[Details]
• Once G11 is executed, the NC enters the state in which a local coordinate system is defined. If G11 is executed again in this state, it will change the previously defined local coordinate system. At the second designation of G11, if the designation of an axis address is omitted, the value designated in the first G11 is assumed to apply. The set values are cleared when the power supply is turned OFF / ON, the NC is reset, or G10 (local coordinate system cancel) is executed.
• A block which contains G10 or G11 must not contain any other G codes.
• G10 and G11 are modal. G10 is set when the power is turned ON or when the NC is reset.
• G11 must not be specified in the following modes:
 • Geometry enlargement/reduction mode
 • Machine coordinate system selected mode
 • Copy function mode
[Example program]
If a local coordinate system is used, the example workpiece shown below would be programmed as indicated in the example program.

```
N1  G15  G90  G00  X0  Y0  H01 ........... Selecting work coordinate system 1
N2  G01  X60  F100
N3  Y40
N4  X0
N5  Y0
N6  G17  G11  X20  Y10  P40 ............... Setting a local coordinate system
N7  X0  Y0
N8  X30
N9  Y10
N10 X0
N11 Y0
N12 G10 ........................................ Canceling a local coordinate system
```

* : The zero offset values of work coordinate system 1 are : x = 25, y = 15
6-2. Copy Function (COPY, COPYE)

[Function]
The copy function is used to facilitate part machining by repeating the same pattern with parallel shift and rotation. First, specify parallel shift and rotation of a local coordinate system using COPY instead of G11, then program the pattern to be repeated. Finally, specify the incremental value of parallel shift / rotation.

[Programming format]
Parallel shift/rotation of local coordinate system: COPY IP__ P__ Q__

- **IP:** Initial value of parallel shift component to establish a local coordinate system. Specify this as an absolute value in reference to the origin of the presently selected work coordinate system.
- **P:** Initial value of rotation component to establish a local coordinate system. Specify this value in units of 1 degree, 0.001 degree, or 0.0001 degree in accordance with the selected unit system (“LENGTH UNIT SYSTEM” and “ANGLE” of NC optional parameter (INPUT UNIT SYSTEM)). If a P command is not specified in the G11 mode, the previous setting is valid.
- **Q:** The number of times the pattern should be repeated. Setting range: 1 to 9999 Default value: 1

Repeated pattern program: COPYE IP__ P__

- **IP:** Incremental value for parallel shift of a local coordinate system. Default value: 0
- **P:** Incremental value for rotation of a local coordinate system. Default value: 0

[Details]
- Both G11 and COPY may be specified while a local coordinate system is established by the execution of G11. Once COPY is specified, however, an alarm occurs if G11 or COPY is specified again.
- If COPY is specified in the main program selected for operation method B (large-volume tape operation), designation of IF and GOTO is not permissible in the program that defines the pattern to be repeated. The size of the program beginning with COPY and ending with COPYE must be within 10 m (33 ft) in tape length.
[Example program]

G11 X15 Y25 P - 30
G01 X30 F100 M03
COPY Q4
G01 X30 Y0 Start point of arc
G03 X0 Y30I - 20J10
G01 X0 Y30 End point of arc
COPYE P90

*: Circular interpolation commands must not be specified in the block immediately after the COPY block and the one immediately before the COPYE block.
7. **Workpiece Geometry Enlargement / Reduction Function (G51, G50) (Optional)**

[Function]
The workpiece geometry enlargement / reduction function enlarges or reduces the geometry defined by a program in reference to the point specified in a local coordinate system. If a local coordinate system is not specified, a work coordinate system is used to specify the reference point for enlargement / reduction.

[Programming format]
Enlargement / reduction of geometry: G51 IP ____ P__

IP: The center of the enlargement / reduction of geometry. Specify this point in a local coordinate system. For axes not specified in this block, the coordinate value (in the local coordinate system) of the point at which G51 is specified is assumed to apply.

P: Multiplication factor for enlargement or reduction. Programmable range: 0.000001 to 99.999999
Default value: 1

[Cancellation of enlargement / reduction: G50]

[Details]
- The enlargement/reduction function is made valid or invalid on individual axes according to the setting for NC optional parameter (geometry enlargement/reduction). However, an alarm will occur in the radius check if the parameter setting differs among the axes in the plane specified for circular interpolation.

- The enlargement/reduction function does not affect the following:
 - Local coordinate system setting values (G11)
 - Cutter radius compensation values and three-dimensional offset values (G41, G42, G43)
 - Tool length offset values (G56 to G59)
 - Work coordinate system setting values (G92)
- The following amounts for Z-axis movement in a fixed cycle
 - Pecking feed and retraction amount in the deep hole drilling fixed cycle along Z-axis (G73, G83)
 - X- and Y-shift amount in the fine boring and back boring fixed cycle along Z-axis (G76, G87)
Example:
Cutter radius compensation and enlargement and reduction of workpiece geometry

[Example program]
An example program for setting a local coordinate system and enlarging/reducing workpiece geometry is shown below.

N1	G17 G11 X50 Y30 P45	Setting of local coordinate system
N2	G90 G51 X20 Y10 P0.5	Reduction of geometry
N3	G01 X40	Positioning at P'1
N4	Y20	Positioning at P'2
N5	X0	Positioning at P'3
N6	Y0	Positioning at P'4

![Diagram of local coordinate system and workpiece geometry](image1)

Geometry after setting a local coordinate system and reducing geometry

![Diagram showing work coordinate system and local coordinate system](image2)
SECTION 5 S, T, AND M FUNCTIONS

This section describes the S, T, and M codes which specify necessary machine operations other than axis movement commands.

S: Spindle speed
T: Tool number for tool change cycle
M: Turning solenoids and other similar devices on and off

Only one of each of these types of code may be specified in one block.

1. S Code Function (Spindle Function)

[Function]
The spindle function specifies a spindle speed with a numeric value (up to five digits) entered following address S.

[Details]
- The desired spindle speed (min⁻¹) is directly specified by a numeric value following the address S.
 Programmable range: 0 to 65535
- If an S command is specified with axis movement commands in the same block, the S command becomes valid at the same time axis movement commands are executed.
- Although an S command is not canceled when the NC is reset, it is cleared when the power supply is turned off.
- To execute a spindle rotation command (M03, M04), an S command must be specified in the same or a previous block.

2. T Code Function

[Function]
The tool function selects a tool in the machine with a numeric value (up to four digits) entered following address T.

[Details]
- The programmable range of a T command is indicated below.
 Programmable range: 0 to 9999
- When a T code is executed, the next tool is prepared (indexing the next tool in the magazine, or taking the next tool out of the magazine and setting it in the ready station position).
- The actual tool change cycle is executed by M06.
- If a T command is specified with axis movement commands in the same block, the execution timing of the T code can be selected from the following two timings:
 Executed simultaneously with axis movement commands
 Executed after the completion of axis movement commands
3. M Code Function (Miscellaneous Function)

[Function]
The M code function outputs an M code number, consisting of a three-digit number and address M, and the strobe to the PLC. The programmable range of M codes is from 0 to 511.

3-1. Examples of M Codes

The followings are examples of M codes.

(1) M02, M30 (End of Program)
These M codes indicate the end of a program. When M02 or M30 is executed, the main program ends and reset processing is executed. The program is rewound to its start. (In the case of a schedule program, execution of M02 or M30 in the main program does not reset the NC.)

(2) M03, M04, M05 (Spindle CW/CCW and Stop)
These M codes control spindle rotation and stop; spindle CW (M03), spindle CCW (M04), and spindle stop (M05).

(3) M19 (Spindle Orientation)
The M19 command is used with machines equipped with the spindle orientation mechanism. The spindle orientation function stops the spindle at a specified angular position.

- Multi-point spindle indexing
 By specifying “RS=angle” following M19, it is possible to index the spindle at the specified angular position.
 Although the following explanation uses M19 as an example, the same applies to M118 and M119.
 M19 RS = \(\theta \)
 - \(\theta \) represents the desired index angle and it is specified in units of 1°. If a value smaller than 1° is specified, it is truncated.
 - Programmable range of \(\theta \): 0 to 360°
 - \(\theta \) specifies the desired index angle of the spindle, measured in the CW rotation angle in reference to the spindle orientation position.

[Supplement]

- If M19 (M118, M119) is specified without argument RS, ordinary spindle orientation is performed. That is, the called operation is the same as that called by “M19 RS=0”.
- RS must always be specified in the same block as M19 (M118, M119).

(4) M52 (Fixed Cycle - Return to the Retract End)
In various fixed cycles, this command sets the return position of the cycle axis 0.1 mm away from the travel limit of the Z-axis in the positive direction.
For details, refer to SECTION 7, “Fixed Cycle Operations”.

(5) M53 (Fixed Cycle - Return to the Specified Point)
In various fixed cycles, this command sets the return position of the cycle axis at the position specified by G71.
For details, refer to SECTION 7, “Fixed Cycle Operations”.

(6) M54 (Fixed Cycle - Return to Point R Level)
In various fixed cycles, this command sets the return position of the cycle axis at the position specified by R command.
For details, refer to SECTION 7, “Fixed Cycle Operations”.

(7) M132, M133 (Single Block Valid/Invalid)
These M codes set whether the single block function is made invalid (M132) or valid (M133) independently of the setting of the single block switch on the machine operation panel.

(8) M201 to M210 (M Code Macro)
By setting the program names which correspond to M201 to M210 in the parameters, the sub programs can be executed by specifying the M codes.
For details of M code macro, refer to SECTION 10, “G and M Code Macro Functions”.

(9) M238, M239 (Soft-override Valid/Invalid)
These commands set whether or not the soft-override value (%) set for system variables <VFSOV> is valid (M238) or invalid (M239) for the cutting feedrate (F command × override value).

(10) M00 (Program Stop)
After the execution of M00, the program stops. If the NC is started in this program stop state, the program restarts.

(11) M01 (Optional Stop)
When M01 is executed while the optional stop switch on the machine operation panel is ON, the program stops. If the NC is started in this optional stop state, the program restarts.

(12) M06 (Tool Change)
This M code is used with machines equipped with the tool change mechanism as the tool change cycle start command.

(13) M15, M16 (Fourth Axis - Rotary Table CW, CCW)
These M codes are used with machines equipped with the rotary table as the fourth axis to specify the direction of rotary table rotation; CW (M15), CCW (M16).
For details of the rotary table control, refer to “Additional Axis (Rotary Axis) Function” is SPECIAL FUNCTIONS Manual No.2.

(14) M115, M116 (Fifth Axis - Rotary Table CW, CCW)
These M codes are used with machines equipped with the rotary table as the fifth axis to specify the direction of rotary table rotation; CW (M115), CCW (M116)
For details of rotary table control, refer to “Additional Axis (Rotary Axis) Function” is SPECIAL FUNCTIONS Manual No.2.

(15) M118, M119 (Spindle Index - CCW, Shorter Path)
These M codes are used with machines equipped with the spindle index mechanism as the spindle orientation direction specifying command.
[Programming format]
- M118 Spindle index (CCW)
- M119 Spindle index (shorter path)

(16) M130, M131 (For Cutting Feed, Spindle Rotation Condition Valid / Invalid)
Usually, in the G01, G02, and G03 modes, the spindle must be rotating to execute axis feed. These M codes are set to ignore this condition (M130) or validate it (M131).

(17) M134, M135 (Spindle Speed Override Valid / Invalid)
Even in the status in which spindle speed override control from the PLC is valid, the spindle speed override function can be made invalid (M134) or valid (M135) with these commands.

(18) M136, M137 (Axis Feed Override Valid / Invalid)
These M codes set whether the axis feed override function is made invalid (M136) or valid (M137) independently of the ON status of the axis feed override signal from the PLC.

(19) M138, M139 (Dry Run Valid / Invalid)
These M codes set whether the dry run function is made invalid (M138) or valid (M139) independently of the setting of the dry run switch on the machine operation panel.
(20) M140, M141 (Slide Hold Valid / Invalid)
These M codes set whether the slide hold function is made invalid (M140) or valid (M141) independently of the setting of the slide hold switch on the machine operation panel.

(21) M234 to M237 (Gear Selection Range for Synchronized Tapping)
These M codes set the gear selection range for synchronized tapping. For details, refer to “Torque Monitoring Function” in Synchronized Tapping of SPECIAL FUNCTIONS Manual.

(22) M326, M327 (Torque Monitor ON / OFF for Synchronized Tapping)
These M codes turn ON (M326) and OFF (M327) the torque monitor mode for synchronized tapping.

(23) M331, M332 (Sixth Axis - Rotary Table CW / CCW)
These M codes are used with machines equipped with the rotary table as the sixth axis to specify the direction of rotary table rotation; CW (M331), CCW (M332) For details of rotary table control, refer to “Additional Axis (Rotary Axis) Function” is SPECIAL FUNCTIONS Manual No.2.

(24) M396 to M399 (Gear Position Selection for Synchronized Tapping)
These are gear position commands, specially for synchronized tapping, introduced by the gear selection range specifying M codes (M234 to M237) and the S command. They are automatically generated by the NC.

- M396: 1st gear command for synchronized tapping
- M397: 2nd gear command for synchronized tapping
- M398: 3rd gear command for synchronized tapping
- M399: 4th gear command for synchronized tapping
SECTION 6 OFFSET FUNCTIONS

1. Tool Length Offset Function (G53 - G59)

[Function]
The tool length offset function compensates for the position of a cutting tool so that the tip of the cutting tool is located at the programmed position.

Available G Codes

<table>
<thead>
<tr>
<th>G Code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G53</td>
<td>Cancel tool length offset</td>
</tr>
<tr>
<td>G54</td>
<td>Tool length offset, X-axis</td>
</tr>
<tr>
<td>G55</td>
<td>Tool length offset, Y-axis</td>
</tr>
<tr>
<td>G56</td>
<td>Tool length offset, Z-axis</td>
</tr>
<tr>
<td>G57</td>
<td>Tool length offset, 4th-axis</td>
</tr>
<tr>
<td>G58</td>
<td>Tool length offset, 5th-axis</td>
</tr>
<tr>
<td>G59</td>
<td>Tool length offset, 6th-axis</td>
</tr>
</tbody>
</table>

[Details]

- The displayed actual tool position value always includes the tool length offset amount.
- The tool length offset cannot be applied to two or more axes at the same time or to the rotary axis.
- The tool length offset may be changed directly without having to cancel the previous command with G53.
- When the NC is reset, H00 is automatically set.
2. Cutter Radius Compensation (G40, G41, G42)

2-1. Cutter Radius Compensation Function

[Function]
The cutter radius compensation function automatically compensates for the cutter radius. Programming the geometry of a workpiece as it is will not result in a correct final product because the size (diameter) of the tool is not taken into consideration. It would, however, be extremely complicated and difficult to develop a program which takes the tool diameter into account. This problem may be solved by a function called cutter radius compensation which automatically compensates for the tool diameter. If the cutter radius compensation function is used for programming, the correctly offset tool center path is automatically generated by programming the tool path along the geometry of workpiece to be machined.

[Programming format]

G17 G41 (G42) Xp___ Yp___ D___
G18 G41 (G42) Zp___ Xp___ D___
G19 G41 (G42) Yp___ Zp___ D___

G40: Cancel cutter radius compensation (The mode automatically selected when the power is turned ON.)
For details, refer to “Tool Movement when Cutter Radius Compensation is Canceled”.

G41: Cutting at left (Offset - the left side as seen from the tool moving direction; downward cutting)
For details, refer to “Changing Compensation Direction in Cutter Radius Compensation Mode”.

G42: Cutting at right (Offset to the right side as seen from the direction of tool motion; upward cutting)
The cutter radius compensation mode is set when either G41 or G42 is specified and this mode is canceled by G40. For details, refer to “Changing Compensation Direction in Cutter Radius Compensation Mode”.

G17: Xp-Yp plane selection Select the plane in the same manner as in the G02 or G03 mode.
G18: Zp-Xp plane selection Select the plane in the same manner as in the G02 or G03 mode.
G19: Yp-Zp plane selection Select the plane in the same manner as in the G02 or G03 mode.

D**: Cutter radius compensation number. (For details, refer to “Notes on Cutter Radius Compensation”.)
The explanation below assumes G17 (Xp-Yp plane), which is automatically set when power is turned ON. For the Zp-Yp plane and the Yp-Zp plane, the same explanation applies.

Entry to the cutter radius compensation mode is allowed only in the G00 or G01 mode. An alarm occurs if the cutter radius compensation mode is called in other modes.

The mode is changed to the cutter radius compensation mode in the first block that contains a command that actually causes axis movement after the designation of the cutter radius compensation command.

The terms “inside” and “outside” are defined as follows:
The angle made between consecutive tool paths is measured at the workpiece side and “inside” and “outside” are defined by the magnitude of this angle. If the angle is larger than 180°, it is defined as “inside” and if the angle is in the range between 0 and 180°, it is defined as “outside”.

The symbols used in the illustrations in “Tool Movement in Start-up” to “Notes on Cutter Radius Compensation” have the following meaning:

S : Single block stop point
L : Linear motion
C : Circular motion
T : Tangent to an arc
D : Cutter radius compensation amount
θ : Angle at the workpiece side
CP : Cross point, made when a programmed path (or the tangent to an arc) is shifted by a compensation amount
 : Programmed tool path
 : Tool center path
 : Auxiliary line
2-2. Tool Movement in Start-up

2-2-1. Inside Corner Cutting \((θ \geq 180°)\)

(1) Straight line - Straight line

(2) Straight line - Arc

2-2-2. Obtusely Angled Corner - Outside Cutting \((90° \leq θ \leq 180°)\)

(1) Straight line - Straight line

(2) Straight line - Arc
2-2-3. Acutely angled corner - outside cutting ($\theta < 90^\circ$)

(1) Straight line - Straight line

(2) Straight line - Arc

(3) Exception
Outside cutting at an acute angle of 0.1° or less is considered to be “inside” as shown below.
2-2-4. Start-up with Imaginary Approach Direction

If the block which starts up the cutter radius compensation includes any I__, J__, or K__ belonging to the offset plane (I__, J__ in the case of G17 plane), the axes move to the target point specified in this block from the direction defined by I__ and/or J__. In this case, note that the cross point is always calculated regardless of whether the cutting is “inside” or “outside.”

If no cross point exists, positioning is executed to the point obtained by a vertical shift by the compensation amount from the target point specified in the G41 block.
2-3. Tool Movement in Cutter Radius Compensation Mode

NOTICE

This section describes how the tool moves after the cutter radius compensation mode has been established until that mode is canceled.

In the cutter radius compensation mode, the following four axis movement modes can be specified: G00, G01, G02, and G03. In this mode, up to three blocks which do not contain movement commands of the axes in the selected plane may be given successively. However, if zero movements of the axes in the selected plane are specified successively in four blocks, or even one block of zero movement of an axis in the selected plane is specified, the commands are processed in the manner shown below, resulting in over-or under-cutting. Therefore, avoid such commands in a program.

Example: Consecutive 4 blocks (zero movements of the axes in the selected plane)

```
N4 X5000 Y5000
N5 Z5000
N6 F1000
N7 M01
N8 G04 F50
N9 X100000
```

Example: One block (zero movement of the axes in the selected plane)

```
N4 G91 X5000 Y5000
N5 X0
N6 X5000
```
2-3-1. Inside Cutting ($\theta \geq 180^\circ$)

(1) Straight line - Straight line

(2) Straight line - Arc

(3) Arc - Straight line
(4) Arc - arc

(5) Exception
There is an exception in processing where inside cutting at 0.1 degrees or less for the straight line - straight line configuration is replaced by outside cutting (this is explained later) because the ordinary method of finding the cross point will deviate significantly from the command value.

(6) The processing shown above is limited to the straight line - straight line configuration. In other cases, such as the straight line - arc shown below, the ordinary method is used.
2-3-2. Obtusely Angled Corner - Outside Cutting ($90^\circ \leq \theta \leq 180^\circ$)

(1) Straight line - Straight line

(2) Straight line - Arc

(3) Arc - Straight line

(4) Arc - arc
2-3-3. Acutely Angled Corner - Outside Cutting ($\theta < 90^\circ$)

(1) Straight line - Straight line

(2) Straight line - Arc

(3) Arc - Straight line
(4) Arc - arc

2-3-4. Inside Cutting, with Failure to Find Cross Point

As shown in the illustration below, there may be situations in which a cross point exists with a small compensation amount (D1), but not with a large compensation amount (D2). In this case, an alarm occurs and operation stops. In the single block mode, the alarm occurs in the block which precedes the one which will cause the alarm state. In other modes, the alarm occurs several blocks before the block causing the “no cross point” condition.

2-4. Tool Movement when Cutter Radius Compensation is Canceled

[Function]
When the following commands are executed in the cutter radius compensation mode, the cutter radius compensation cancel mode is set.

[Programming format]
G40 G00 (G01) Xp__ Yp__
The axis movement mode for canceling the cutter radius compensation mode must be either G00 or G01.
2-4-1. **Inside Cutting** ($\theta \geq 180^\circ$)

(1) Straight line - Straight line

(2) Arc - Straight line

2-4-2. **Obtusely Angled Corner** - **Outside Cutting** ($90^\circ \leq \theta \leq 180^\circ$)

(1) Straight line - Straight line

(2) Arc - Straight line
2-4-3. Acutely Angled Corner - Outside Cutting ($\theta < 90^\circ$)

(1) Straight line - Straight line

(2) Arc - Straight line

(3) Exception
Outside cutting at an acute angle of 1 degree or less is considered to be “inside” as shown below.
2-4-4. Independent G40 Command

G40 given independently will position the axes at a point shifted in the vertical direction by an amount equivalent to the compensation amount (D) from the position specified in the preceding block.

Straight line

2-4-5. Cancel with Imaginary Approach Direction

If the block which cancels the cutter radius compensation mode includes any I__, J__, or K__ belonging to the offset plane (I__, J__ in the case of G17 plane), the axes move to the target point specified in this block from the direction defined by I__ and/or J__. In this case, note that the cross point is always calculated regardless of whether the cutting is “inside” or “outside”.

Imaginary approach direction

N6 G41 X10000
N7 G40 X20000 Y5000 I-1 J-1

Imaginary approach direction

N6 G41 X10000
N7 G40 X20000 Y5000 I-1 J-1
If no cross point exists, positioning is executed to the point obtained by a vertical shift by the compensation amount from the target point specified in the block immediately preceding the G40 block.

2-5. Changing Compensation Direction in Cutter Radius Compensation Mode

- The direction of compensation may be changed even in the cutter radius compensation mode by executing G41 or G42 or by reversing the sign (plus or minus) of the compensation amount.

<table>
<thead>
<tr>
<th>G Code</th>
<th>Positive/Negative Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
</tr>
<tr>
<td>G41</td>
<td>Offset to left (cutting left side)</td>
</tr>
<tr>
<td>G42</td>
<td>Offset to right (cutting right side)</td>
</tr>
</tbody>
</table>

- Execution conditions

<table>
<thead>
<tr>
<th>Mode</th>
<th>Command</th>
<th>Straight line - Arc</th>
<th>Arc - Straight line</th>
<th>Arc - Arc</th>
</tr>
</thead>
<tbody>
<tr>
<td>G41</td>
<td>G41</td>
<td>Not valid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G42</td>
<td>G42</td>
<td>(When the plus or minus sign of the offset amount is not changed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G41</td>
<td>G42</td>
<td>Executable</td>
<td>Alarm if no cross point exists</td>
<td></td>
</tr>
<tr>
<td>G42</td>
<td>G41</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When changing the offset direction, there are no distinctions between inside and outside cutting, but there are differences depending on whether or not a cross point exists. The following descriptions assume that the compensation amount is positive.
2-5-1. With Cross Point

(1) Straight line - Straight line

(2) Straight line - Arc

(3) Arc - Straight line

(4) Arc - Arc
2-5-2. **Without Cross Point**

(1) Straight line - Straight line

(2) Straight line - Arc

2-5-3. **Circular Arc Forming an Overlapping Circle**

If an overlapping circle (exceeding a full circle) is generated as the result of offset direction change, the tool will move along a shorter arc to reach the target point. To avoid this, the circular arc should be divided.
2-6. Notes on Cutter Radius Compensation

2-6-1. Specifying the Cutter Radius Compensation Amount

- The compensation amount is specified as a D command. A D command is usually specified with G41 or G42 in the same block. If no D command is included in a G41 or G42 block, the previously specified D command is used.

- The range of cutter radius compensation numbers is from D00 to D50 for the standard specification, and this can be expanded to D00 to D100, D200, or D300. The compensation amount of D00 is "0". The compensation data is set in the tool data setting mode.

2-6-2. Changing the Compensation Amount

If the compensation amount is changed in the compensation mode, the new compensation amount becomes valid starting at the end of the block in which the new compensation amount is specified.

2-6-3. Actual Position Data Display

For the present position display, the coordinate value of the tool center is displayed.

2-6-4. Inside Cutting of an Arc Smaller than the Cutter Radius

An alarm occurs and operation stops if the inside of an arc that is smaller than the cutter radius is going to be cut.

In the single block mode, operation stops at the end point two blocks ahead of the block which specifies such an operation, and in other modes, operation stops several blocks ahead.
2-6-5. Under-cutting

Under-cutting may occur when cutting a step with a height smaller than the cutter radius.

\[d < D \]

![Diagram of under-cutting](image)

2-6-6. Cautions on Corner Cutting

- When cutting an outside corner, a polygonal tool path is generated. The axis move mode and feedrate at the corners will follow the commands specified in the next block. If the interpolation mode in the next block is either G02 or G03, the tool moves in the G01 mode along the generated polygonal tool path.

Axis movement for this inserted path is controlled by the command (F800) specified in N5.

\[
\begin{align*}
N4 & \quad X__Y__ \quad F500 \\
N5 & \quad Z__ \quad F800 \\
N6 & \quad X__Y__ \\
\end{align*}
\]

Z-axis movement is executed at point S

- If the tool path inserted to cut a corner is very small (\(\Delta V_x \) and \(\Delta V_y \) in the illustration), the second point defining this movement is disregarded.

The second point defining extra movement is disregarded if \(\Delta V_x \leq \Delta V \) and \(\Delta V_y \leq \Delta V \).

\(\Delta V \) value: Set for COMPENSATION VECTOR CHECK of NC optional parameter (CUTTER R COMPENSATION)

In this manner, the additional minute axis movement may be reduced.
Note that this processing is not executed when the next block forms a full circle.

In the illustration shown above, correct movement should be as follows:
1) P0 - P1 - P2 Straight line
2) P2 - P3 Straight line
3) From point P3 Full circle

However, if the movement from point P2 to point P3 is disregarded due to the minute movement processing, the movement up to point P3 is as follows:
1) P0 - P1 - P2 Straight line
2) P2 - P3 Arc

Thus, the program generates a minute arc from P2 to P3 and disregards the full circle that should be generated after P3.
2-6-7. Interference

NOTICE

Interference refers to problems in which a cutting tool over-cuts or makes too deep a cut into a workpiece. The NC always monitors and checks the occurrence of interference. The NC judges interference to have occurred in the following case:

When the difference between the direction of the programmed path and that of the path resulting from cutter radius compensation is between 90° and 270°. It is therefore possible that conditions that do not cause interference are regarded as interference and conditions that actually cause interference are regarded as an interference-free state.

When a corner is cut along a polygonal tool path, each corner can be formed by up to four points. To check for interference, two corners, P1, P2, P3, P4 and P5, P6, P7, P8, are evaluated. Interference checks are made sequentially; the first interference check is made between the last point of a corner (P4) and the first point of the next corner (P5). If an interference is found, the point is disregarded and the next point is checked. If no interference is found halfway through the procedure, the interference check is not executed for the later points. The movement mode during the check is straight line movement. For the circular interpolation block, axes move along the inserted polygonal path in the G01 linear interpolation mode.

If an interference remains after all points have been checked, an interference alarm occurs, but the very last point is not disregarded. As a result, over-cut can occur if the program is executed in the single block mode.

How the interference check is executed is explained below using several examples.

1. Interference not found

 In this example, no interference is found in the first check (N4 → N5 and P4 → P5). Therefore, no checks are made on the later points and the interference is not discovered.

 ![Diagram](image.png)

 Although direction P3-P6 is reversed, this is not checked since there is no interference in the check on P4-P5.
(2) Interference check resulting in a path change
In this example, the following directions of movement are checked and disregarded because interference is discovered: N4 - N5, P4 - P5, P3 - P6 and P2 - P7. However, since interference is not found in the check on P1 - P8, the tool moves along this path (P1 - P8) in the G01 mode.

(3) Interference check resulting in an alarm
In this example, each corner has only one point and point P1 remains and is not disregarded. In the single block mode, an alarm occurs and operation stops after positioning is executed at P1. In other operation modes, an alarm occurs and operation stops several blocks ahead of the block causing positioning at P1.

(4) Non-interference considered interference
In this example, if N4-N5 is smaller than the cutter diameter, no interference will take place. However, since the direction of P4-P5 is opposite to that of N4-N5, an interference alarm occurs.
(5) Minute arc and quasi-full circle
A minute arc is defined as an arc in which the horizontal and vertical distances from start to end point is smaller than the value set at ERROR DATA RESULTING FROM CUTTER R COMP. CAL. of NC optional parameter (cutter R compensation).
A quasi-full circle is defined as an arc which is close to a full circle; the horizontal and vertical distances of the break is smaller than the value set at ERROR DATA RESULTING FROM CUTTER R COMP. CAL. of NC optional parameter (cutter R compensation).

Here,
Assume that $\Delta X \leq \Delta Y$ and $\Delta Y \leq \Delta V$.
ΔV: Set at ERROR DATA RESULTING FROM CUTTER R COMP. CAL. of NC optional parameter (cutter R compensation).
For these two types of arcs, special interference checks are provided. “Problem” conditions detected in minute arcs and quasi-full circles by an interference check are not considered interference, but are regarded as operational errors. In the case of a minute arc, the end point is disregarded and the shape is regarded as a point; no movements along an arc are executed. In
the case of a quasi-full circle, the end point is disregarded and the shape is processed as a full circle.

P2 is disregarded and circular interpolation is not executed.

P2 is disregarded and a full circle from P1 is formed.
2-6-8. Manual Data Input

- If the cutter radius compensation mode is set while in the MDI mode, or if the MDI mode is set in the cutter radius compensation mode, execution of a block of commands including an axis movement command is not allowed immediately after their input from the keyboard. In this case, the commands of the next axis movement must be input before executing the presently input commands. Alternatively, instead of inputting the next axis movement commands, inputting four successive blocks of commands not including axis movements also allows the execution of the presently input commands.

- In automatic operation with single block function OFF, if the mode is changed to the MDI mode, the program is executed up to the block immediately ahead of the block that has been read to the buffer (the line identified by a ">>" symbol on the screen) and then operation stops. The commands input in the MDI mode are read next to the block in the buffer, then the cutter radius compensation function is executed.

Example:
Suppose that the MDI mode is established while block N1 is being executed. If the screen displays the program shown in Fig. 1, operation stops after block N4 is executed. After the operation is stopped, the screen displays the program as shown in Fig. 2.

When the commands of block N56 are input from the keyboard and the CYCLE START button is pressed, block N5 is executed and then operation stops. If the operation mode is returned to an automatic mode and the CYCLE START button is pressed, blocks are executed in the order N56, N6', then N7.
2-6-9. Zero Cutter Radius Compensation Amount

(1) During start-up
The cutter radius compensation mode is established when G41 or G42 is executed in the cancel mode, and the cutter radius compensation mode start-up operation is executed with a cutter radius compensation amount of zero. In this case, however, cutter radius compensation is not executed. When the cutter radius compensation number is changed to the one that calls a compensation amount other than zero in the cutter radius compensation mode, the processing described in “Changing the Compensation Amount” is executed.

(2) During compensation mode
Even if the cutter radius compensation number is changed to one that calls a compensation amount of “zero” while in the cutter radius compensation mode, the cancel processing is not executed, and neither is the cancel mode set. In this case, the processing described in “Changing the Compensation Amount” is executed. When the cutter radius compensation number is changed again to one that calls a compensation amount other than zero, the same processing as described in “Changing the Compensation Amount” is also executed.
3. **Cutter Radius Compensation Mode Override Function**

3-1. **Automatic Override at Corners**

[Function]
In the cutter radius compensation mode, depth of cut may increase while cutting the inside of a corner, resulting in an increased tool load. To reduce the load applied to the tool, feedrates are automatically overridden.

[Setting values]
Set the following four parameters directly in the PARAMETER SET mode.

- *Slowdown distance at the end point of a corner (\(l_e\): End Point Decelerating Distance of NC optional parameter (cutter R compensation) Setting range: 0 to 99999.999 mm or 0 to 3937.0078 inches Default: 0
- *Slowdown distance at the start point of a corner (\(l_s\): Starting Point Decelerating Distance of NC optional parameter (cutter R compensation) Setting range: 0 to 99999.999 mm or 0 to 3937.0078 inches Default: 0
- Slowdown rate (\(\gamma\): Decelerating Rate of NC optional parameter (cutter R compensation) Setting range: 1 to 100% Default: 100%
- Angle of inside cut (\(\theta\): Corner's Internal Identification Angle of NC optional parameter (cutter R compensation) Setting range: 1 to 179°
Requirements for turning ON the override function
The override function will be turned ON if both of the two blocks that form a corner satisfy the following requirements.

- The block is specified in the cutter radius compensation mode.
- The axis movement mode is G01, G02, or G03.
- The corner's inner angle is smaller than the value, θ, set for the “angle of inside cut”.
- No more than three blocks calling no axis movements are entered between these two blocks.
- G40, G41, or G42 is not specified in these two blocks.
- A rotary axis command is not specified in these two blocks.
- The slowdown rate is not 100%.
- The direction of compensation does not change.
- The slowdown distance at the corner start point and end point is not “0”.

The override function is also valid for F1-digit feed commands as long as the above requirements are satisfied.
The override function is invalid for dry run operation even if the above requirements are satisfied.
3-2. **Circular Arc Inside Cutting Override**

[Function]
In the cutter radius compensation mode, feedrate is normally controlled so that the feedrate on the tool path (the path along which the tool center moves) will be the specified feedrate. When cutting the inside of a circular arc, however, the feedrate is overridden so that the feedrate on the programmed path will the feedrate specified in the program.

[Setting value]
The lower limit of the feedrate for cutting the inside of a circular arc is set.
Override rate: Set at Decelerating Rate For Comp. Arc's Internal Override of NC optional parameter (cutter R compensation)
Setting range: 1 to 100%
Default: 100%

[Details]
- When cutting the inside of an arc as shown in the illustration above, the actual feedrate is expressed by the formulas indicated below.

1. \(\frac{\gamma_c}{\gamma_p} \times 100 \geq \text{Parameter setting} \)

 Actual feedrate = Programmed feedrate \(\times \frac{\gamma_c}{\gamma_p} \)

2. \(\frac{\gamma_c}{\gamma_p} \times 100 < \text{Parameter setting} \)

 Actual feedrate = Programmed feedrate \(\times \text{Parameter setting} \)

- Requirements for turning ON the circular arc inside cutting override function
 The override function will be turned ON when the following requirements are satisfied.
 - The block is specified in the cutter radius compensation mode.
 - Inside cutting of a circular arc is being executed.
 - The above two override functions are effective for both F4-digit and F1-digit commands specified in the tool radius compensation mode.
 - If override functions (automatic corner override, arc inside cutting override, and standard F4-digit feed command override) overlap, the actual feedrate is obtained by the following calculation.

\[
\text{Actual feedrate} \times \frac{\gamma_c}{\gamma_p} \times \frac{\text{F4-digit feed override}}{100} \times \frac{\text{Automatic corner}}{100}
\]
4. Three-dimensional Tool Offset (G43, G44) (Optional)

The three-dimensional tool offset function executes tool offset in three dimensions based on the axis move commands and the I, J, and K values which specify the tool offset direction.

4-1. Three-dimensional Tool Offset Start-up

[Programming format]
The three-dimensional offset mode will begin when the following command is executed during the cancel mode for tool offset (cutter radius compensation, three-dimensional tool offset):

G44 Xp__ Yp__ Zp__ I__ J__ K__ D__

[Details]
- The three-dimensional space where the offset will be applied is determined by the axis addresses (Xp, Yp, Zp) specified in this start-up block. If axis addresses are not specified in the start-up block, the default settings that apply are the X-, Y-, and/or Z-axes.

Example:

G44 X__ I__ J__ K__ X, Y, Z space
G44 U__ V__ Z__ I__ J__ K__ U, V, Z space
G44 W__ I__ J__ K__ X, Y, W space

Where
- Xp is the X-axis or its parallel axis, U
- Yp is the Y-axis or its parallel axis, V
- Zp is the Z-axis or its parallel axis, W

- If none of the X, Y, and Z axes are specified, the axes move by the tool offset amount, D.

- At the start-up, if any of the values for I, J, and K is not specified, “0” is assumed for the address(es).

- The tool offset number, or compensation amount, is specified by a D command, just as with the cutter radius compensation function.

- The standard three-dimensional tool offset numbers are D00 to D50, and this can be expanded to D00 to D100, D200, or D300.

- If no D command is specified, the previously specified D number will be used. If there is no previously specified D command, D00 will be assumed to apply.
• Even with a tool offset amount of zero (D00), the three-dimensional offset mode will be started, but no offset movement will take place.

4-2. Three-dimensional Tool Offset Vector

In the three-dimensional tool offset mode, a three-dimensional offset vector is generated at the end of each block, as shown in the illustration below.

[Function]
A three-dimensional offset vector is expressed as indicated below.

\[
\begin{align*}
\text{Xp-axis vector component: } V_x &= \frac{ix\gamma}{p} \\
\text{Yp-axis vector component: } V_y &= \frac{jx\gamma}{p} \\
\text{Zp-axis vector component: } V_z &= \frac{kx\gamma}{p}
\end{align*}
\]

\(i, j, k: \text{Values specified by the addresses I, J, and K.}\)

\(\gamma: \text{Cutter radius compensation amount that corresponds to the cutter radius offset number specified by D.}\)

\(p: \text{Value set for a parameter. When “0” is set for the parameter, the value of } p \text{ is obtained by the following formula.}\)

\[
P = \sqrt{i^2 + j^2 + k^2}
\]

Default: 0
SECTION 6 OFFSET FUNCTIONS

Setting range: 0 to ±99999.999 mm or 0 to ±3937.0078 inches
Parameter: NC optional parameter (long word) No. 7

[Details]

In a block where none of I, J, and K is specified, the same vector as the one generated in the previous block is generated.

- In a block where one of I, J, and K is not specified, a vector with a zero component in the omitted direction is generated.
- If no axis movement command (Xp, Yp, and Zp) is specified although I, J, and K are specified, only the vector is updated and the axes move according to the vector changes.

\[\text{Tool path} \quad \text{Axis movement by vector change amount} \]

\[\begin{align*}
\text{N1} & \quad \text{X}__ \text{Y}__ \text{Z}__ \\
\text{N2} & \quad \text{I}__ \text{J}__ \text{K}__ \\
\text{N3} & \quad \text{X}__ \text{Y}__ \text{Z}__
\end{align*}\]

- I, J, and K specified in a G02 or G03 block (arc or helical cutting) are used to indicate the coordinates of the center of that arc. In this case, the same vector as the one generated in the preceding block is generated.

\[\text{Tool path} \quad \text{Vector generated in the block ahead of the circular interpolation block} \]

At the start-up of the three-dimensional offset, if the axis name of a parallel axis is used for the axis names that define the three-dimensional space, the three-dimensional offset is not valid for the basic axis of the specified parallel axis. This designation does not cause an alarm to occur.

\[\begin{align*}
\text{N1} & \quad \text{G44} \quad \text{W}__ \text{I}__ \text{J}__ \text{K}__ \quad \text{Specifies XYW space} \\
\text{N1} & \quad \text{X}__ \text{Y}__ \\
\text{N3} & \quad \text{Z}__ \quad \text{Z-axis is not offset.}
\end{align*}\]
4-3. **Canceling Three-dimensional Tool Offset**

G43 is used to cancel the three-dimensional tool offset mode.

(a) Canceling in a block with axis commands

(b) Canceling in a block without other commands

(c) Setting tool offset number to D00 (zero offset amount)

If an axis movement command is executed by changing the tool offset number to D00, which calls for zero offset amount, although the axes move in the same manner as when canceling the three-dimensional offset mode, the three-dimensional offset mode is not canceled.

4-4. **Actual Position Data Display And Feedrate**

The coordinate values on the position display screen indicate the actual tool path after offset. The feedrate is controlled so that the axes move along the offset tool path at the programmed feedrate.
4-5. **Relationship with Other G Functions**

- G codes that must not be specified in the three-dimensional tool offset mode.
 - G15, G16, G40, G41, G42, G92
 - G codes for area machining
 - G codes for coordinate system parallel shift/rotation
 - G codes calling a fixed cycle
- The three-dimensional tool offset command must not be specified in the fixed cycle mode.

4-6. **Relationship to Other Tool Offset Functions**

1. **Tool length offset (G53 - G56)**

 The three-dimensional tool offset mode may be executed in the tool length offset mode; and the tool length offset mode may be executed in the three-dimensional tool offset mode. In these cases, tool length offset and three-dimensional tool offset are executed simultaneously.

 Example:
 - Three-dimensional tool offset command is specified in the tool length offset mode.

   ```
   N1  G56 X__Y__Z__H01  ... Tool length offset mode  
   N2  G44 X__Y__Z__I__J__K__D02  ... Three-dimensional tool offset mode  
   N3  X__Y__Z__  
   N4  G53 X__Y__Z__  ... Cancels tool length offset mode  
   N5  G43 X__Y__Z__  ... Cancels three-dimensional tool offset mode
   ```

2. **Cutter radius compensation (G40 to G42)**

 An alarm occurs if a cutter radius compensation command (G41 or G42) is specified in the three-dimensional tool offset mode, or if a three-dimensional tool offset command (G44) is specified in the cutter radius compensation mode. Therefore, these two offset functions must not be performed simultaneously.

   ```
   ```
SECTION 7 FIXED CYCLES

A fixed cycle refers to the function which can define a series of operations executed along the tool in-feed axis (hereafter referred to as the cycle axis), like drilling, boring and tapping, by one block of commands. When repeating the same operation at multiple positions, only the hole positions should be specified in a program.

The following explanation assumes that the X-Y plane is the positioning plane and the Z-axis is the cycle axis. For operations performed on other planes using a different cycle axis, the principle described below is also applicable.
1. **Table of Fixed Cycle Functions**

<table>
<thead>
<tr>
<th>G Code</th>
<th>Function</th>
<th>Spindle Rotation at Positioning Point</th>
<th>Hole Machining Operation</th>
<th>Operation at Hole Bottom Level</th>
<th>Retraction Operation</th>
<th>Spindle Rotation at Return Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>G71</td>
<td>Specifies the return level</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>G73</td>
<td>High speed deep hole drilling</td>
<td>CW</td>
<td>Pecking feed</td>
<td>Dwell</td>
<td>Rapid feed</td>
<td>CW</td>
</tr>
<tr>
<td>G74</td>
<td>Reverse tapping</td>
<td>CCW</td>
<td>Cutting feed</td>
<td>CW after dwell</td>
<td>Cutting feed</td>
<td>CW after dwell</td>
</tr>
<tr>
<td>G76</td>
<td>Fine boring</td>
<td>CW</td>
<td>Cutting feed</td>
<td>After the dwell, the tool bit is moved away from the bored surface. Then, the spindle stops at a specified position and shifts to the direction opposite that of the tool bit</td>
<td>Rapid feed</td>
<td>CCW after shifting to tool bit direction</td>
</tr>
<tr>
<td>G80</td>
<td>Cancel fixed cycle mode</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>G81</td>
<td>Drilling</td>
<td>CW</td>
<td>Cutting feed</td>
<td>Dwell</td>
<td>Rapid feed</td>
<td>CW</td>
</tr>
<tr>
<td>G82</td>
<td>Deep hole drilling</td>
<td>CW</td>
<td>Pecking feed</td>
<td>Dwell</td>
<td>Rapid feed</td>
<td>CW</td>
</tr>
<tr>
<td>G83</td>
<td>Tapping</td>
<td>CW</td>
<td>Cutting feed</td>
<td>CCW after dwell</td>
<td>Cutting feed</td>
<td>CW after dwell</td>
</tr>
<tr>
<td>G84</td>
<td>Boring</td>
<td>CW</td>
<td>Cutting feed</td>
<td>Dwell</td>
<td>Cutting feed</td>
<td>CW</td>
</tr>
<tr>
<td>G85</td>
<td>Boring</td>
<td>CW</td>
<td>Cutting feed</td>
<td>Dwell</td>
<td>Cutting feed</td>
<td>CW</td>
</tr>
<tr>
<td>G86</td>
<td>Boring</td>
<td>CW</td>
<td>Cutting feed</td>
<td>Stop after dwell</td>
<td>Rapid feed</td>
<td>CW</td>
</tr>
<tr>
<td>G87</td>
<td>Back boring</td>
<td>(∗)</td>
<td>Cutting feed</td>
<td>After the dwell, the tool bit is moved away from the bored surface. Then, the spindle stops at a specified position and shifts to the direction opposite that of the tool bit</td>
<td>Rapid feed</td>
<td>CW after shift to tool bit direction</td>
</tr>
</tbody>
</table>

(∗) After orientation, the spindle shifts to the direction opposite that of the tool bit and moves up to level R at a rapid feedrate. After shifting to the tool bit direction, the spindle rotates forward.

M codes used to select the return level:
- M52 Return to the upper limit level
- M53 Return to the specified point level set by G71
- M54 Return to the point R level
2. **Fixed Cycle Operations**

All fixed cycle functions are composed of the following six operations:

- **Operation 1**: Positioning to hole machining position (rapid feedrate)
- **Operation 2**: Rapid feed to point R level
- **Operation 3**: Hole machining
- **Operation 4**: Operation at hole bottom position (point Z level)
- **Operation 5**: Retraction to point R Level
- **Operation 6**: Rapid feed to the return level (upper end or specified point level)

Operation 1 is referred to as the positioning operation and operations 2 to 6 are referred to as the cycle axis operation.

Fixed cycles including a rotary axis may be executed.
2-1. Determining the Positioning Plane and the Cycle Axis

(1) Determining the positioning plane and the cycle axis by commands
The positioning plane may be determined by selecting a plane using G17, G18, and G19. The cycle axis is then chosen as the axis which is vertical to the selected positioning plane or the axis parallel to it.

<table>
<thead>
<tr>
<th>G Code</th>
<th>Positioning Plane</th>
<th>Cycle Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17</td>
<td>Xp-Yp plane</td>
<td>Zp</td>
</tr>
<tr>
<td>G18</td>
<td>Zp-Xp plane</td>
<td>Yp</td>
</tr>
<tr>
<td>G19</td>
<td>Yp-Zp plane</td>
<td>Xp</td>
</tr>
</tbody>
</table>

Xp = X- or U-axis
Yp = Y- or V-axis
Zp = Z- or W-axis

Due to the nature of the cycle axis as described above, once the positioning plane is determined, only two axes can be selected as the cycle axis. To determine the cycle axis to be used, specify the address of the desired axis in the block that contains a fixed cycle G code (G73 - G89).

(Wrong) G17 X__Y__
G18 X__Y__Z__W__R__F__
An alarm occurs since the cycle axis cannot be determined (two possible axes, Z and W, are specified).

(Correct) G17 X__Y__
G18 X__Y__U__V__W__R__
W-axis is selected as the cycle axis.
Movements in the positioning plane

(2) Determining the positioning plane and the cycle axis by parameter
It is possible to fix the cycle axis as the Z-axis by the setting for NC optional parameter (bit) No. 17, bit 0. Accordingly the positioning plane can only be selected by designating G17 (X-Y plane).
2-2. Controlling the Return Level

The return level is defined as the height the Z-axis returns to at the end of one cycle. There are three different return levels possible:

- Selection of the upper limit level (M52) is possible only when the Z-axis is chosen as the cycle axis and when operation is performed in the negative direction of the Z-axis. If the upper limit is selected as the return level, the Z-axis returns to a point 0.1 mm (0.004 in.) away from the travel limit in the positive direction.
- To select the specified point level (M53), it is necessary to define this level in advance using G71.
- For back boring (G87) operation, a return to the point R level (M54) is not possible. Even if M54 is specified, M53 is selected.
- M52 is a one-shot command, which is valid only in a programmed block, and takes priority over M53 and M54. Since both M53 and M54 are modal, one of them is always valid. When the power is turned ON or after the NC is reset, the M54 mode (point R level return) is set.
2-3. Fixed Cycle Mode

- A fixed cycle mode is established by executing a hole machining definition command (G73 to G76 and G81 to G89). The fixed cycle mode is canceled when one of the following G codes is executed: G00, G01, G02, G03 and G80.

- If a hole machining definition command is executed in the fixed cycle mode, the hole machining data is updated according to the newly executed hole executed hole machining command and the fixed cycle mode remains active.

- When the fixed cycle mode is canceled by G80, the interpolation mode (G00, G01, G02, G03, or G60) valid before entering the fixed cycle mode is restored and M05 is generated.

Example:

```
G17
G18 X__Y__
G81 X__Y__ Z__R__F__
    Fixed cycle mode
X__
X__Y__
G80
    Fixed cycle mode cancel
XY.............................. Same as G01 X__ Y__
```

*: Axis movement commands, which are specified with G80 in the same block, are executed only after the fixed cycle mode has been canceled.

2-4. Cycle Operation Conditions

In the fixed cycle mode, the cycle axis operates in the following blocks:

1. Hole machining definition command block which defines operations of the cycle axis.
 If the hole position commands are omitted, the position where the axes are presently located is regarded as the hole position and the cycle axis will operate at this position.

2. Blocks between the hole machining definition command block and the G80 block which contain the hole position data of at least one axis.

Example:

```
G17
G00 X__Y__
G80
```

: Hole position data is omitted, so drilling is carried out at the present position.

```
G18 Z__R__F__
    (empty block)
F__
M__
G04 F__
X__
```

: Drilling cycle is not performed, since the above condition (2) is not met.

```
G80 X__Y__
```

: Drilling cycle is performed at this point, since the above condition (2) is not met.

Even in the blocks that satisfy the above conditions (1) and (2), the cycle axis does not move in the following cases:

- **NCYL (NO CYCLE)**
 If NCYL is specified in the fixed cycle mode, positioning to the defined hole position is performed, but the cycle axis does not operate.

- **NOEX (NO EXECUTE)**
 If NOEX is specified in the fixed cycle mode, no axis movements may be performed. Both NCYL and NOEX are specified in conjunction with the coordinate computation function.
3. General Rules for Programming Fixed Cycles

This section describes the general rules on specifying hole machining data which is specified in blocks containing a fixed cycle call G code, G73 to G76 and G81 to G89. The following explanation assumes that the positioning plane is the Xp-Yp plane and the cycle axis is the Zp-axis.

3-1. Programming Format

(1) G Code Calling a fixed cycle
Once executed, a fixed cycle G code remains valid until it is canceled by a cycle cancel G code (G80, G00 - G03) or replaced by another fixed cycle G code. For details, refer to “Table of fixed cycle Functions”.

(2) Hole Position Data
The hole position data specifies the position at which the fixed cycle (hole machining) is executed.
The addresses used for specifying the position are determined by the plane selection G code (G17, G18 and G19) which defines the positioning plane.
The hole position data may be given in the absolute (G90) or incremental mode (G91) as needed.
Axes move to the hole machining position at a rapid feed rate (G00) mode. If G60 (unidirectional positioning) mode is specified, positioning is made in the unidirectional positioning mode.

(3) Hole Machining Data
- Once programmed, the hole machining data remains valid until it is changed or the fixed cycle mode is canceled.
- Zp: Specifies the hole bottom position.
 In the absolute programming mode (G90), the hole bottom position should be specified as an absolute value. In the incremental programming mode (G91), the distance between the point R level and the hole bottom should be specified.
- R: Specifies the point R level.
 In the absolute programming mode (G90), the point R level should be specified as an absolute value. In the incremental programming mode (G91), the distance from the tool position where the fixed cycle mode starts to the point R level should be programmed.
- Q:
 a. G73, G83 mode
 Specifies the depth of cut per in-feed motion, as a positive, incremental value.
 b. G76, G87 mode
 Specifies the shift amount as a positive, incremental value.
 (If a negative value is specified, the sign is disregarded.)
 c. G74, G84 mode
 Specifies the dwell period at the point R level.
 The relationship between the length of time and the value to be specified is the same as that for G04.
If a negative value is set in the above mode a. or b., the NC ignores the negative sign. When changing the fixed cycle function, check if a Q value specified for another function remains.

I, J, K: Specifies the shift amount in the G76, G87 mode, in an incremental value.

The addresses used to specify a shift amount depend on the selected positioning plane as shown below.

<table>
<thead>
<tr>
<th>G Code</th>
<th>Positioning Plane</th>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17</td>
<td>Xp-Yp plane</td>
<td>I, J</td>
</tr>
<tr>
<td>G18</td>
<td>Zp-Xp plane</td>
<td>K, I</td>
</tr>
<tr>
<td>G19</td>
<td>Yp-Zp plane</td>
<td>J, K</td>
</tr>
</tbody>
</table>

P: Specifies the dwell time period.
The relationship between the length of time and the value to be specified is the same as that for G04.

F: Specifies the feedrate applied to the cutting feed areas in a cycle axis operation.
The programmed feedrate is valid in all interpolation commands and remains valid even after the fixed cycle mode is canceled until a new feedrate is specified.

[Supplement]
The positional relationship among the actual position, return point, point R level, and point Z level is as indicated below.
- In the M52 and M53 modes, the infeed direction is judged from point R and point Z levels, and it is checked whether or not the direction of retraction is the reverse of the infeed direction. (The relation to the actual position is not checked.)
- In the M54 mode, positional relationship is not checked.

3-2. Command Items Necessary for Fixed Cycle Function Commands

The table below shows the command items that must be specified for the individual fixed cycles.

<table>
<thead>
<tr>
<th>Command Item</th>
<th>Hole Position</th>
<th>Point Z Level</th>
<th>Point R Level</th>
<th>Pecking Amount</th>
<th>Shift Amount</th>
<th>Dwell Time</th>
<th>Feedrate</th>
<th>Retraction Amount</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>G73 High speed, deep hole drilling</td>
<td>(A) (A) (B) (B) (C)</td>
<td></td>
<td></td>
<td>(C)</td>
<td>(B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G74 Reverse tapping</td>
<td>(A) (A) (B) (B) (C)</td>
<td>(C) (C) (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G76 Fine boring</td>
<td>(A) (A) (B) (B) (C)</td>
<td>(C) (C) (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G81 Drilling</td>
<td>(A) (A) (B) (B)</td>
<td>(C) (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G82 Deep hole drilling</td>
<td>(A) (A) (B) (B) (B)</td>
<td>(C) (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G83 Tapping</td>
<td>(A) (A) (B) (B)</td>
<td>(C) (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G85 Boring</td>
<td>(A) (A) (B) (B)</td>
<td>(C) (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G86 Back boring</td>
<td>(A) (A) (B) (B)</td>
<td>(C) (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: The positioning plane and the cycle axis are assumed to be the X-Y plane and Z-axis respectively.
Details

- “ABS/INC” indicates that either the absolute (G90) or the incremental command (G91) may be selected for specifying a value.
 “INC” indicates that a value should be specified as an incremental (G91) amount, regardless of the specified dimensioning mode.
- “(A)” indicates that the command item may be omitted from the fixed cycle program block. The most recently entered values will be used as the default values.
- “(B)” indicates that the command item may be omitted from the fixed cycle program block, but must be specified at some point before cycle axis operation.
- “(C)” indicates that the command item may be omitted from the fixed cycle program block. However, if a command item has been specified in a previous fixed cycle program block, the previously specified value will remain in effect.
- The shift amount should be specified using Q, or a combination of I, J, and/or K. The amount specified by Q is valid only when the cycle axis is at the Z-axis, by parameter setting.
- If an address of a blank column is specified, it will be saved to be used as the hole machining data for other fixed cycles.
- All data with the exception of retraction amounts (d1 and d2), which are set for parameters, and feedrate (F), are valid only in the fixed cycle mode.
 The retraction amount values, d1 and d2, are cleared when the fixed cycle mode is canceled or the NC is reset. The feedrate, F, is cleared when the NC is reset.
- The values for P, Q, I, J, and K must be specified in a block where a cycle axis operation is performed. If one of these values is specified in a block without a cycle axis operation, the specified value is not treated as modal data.
- The shift amount must be specified for the fixed cycle called by G76 and G87, otherwise an alarm occurs.
3-3. **Absolute Programming Mode and Incremental Programming Mode**

(1) Specifying point R and point Z

How the points R and Z are defined differs depending on the selected dimensioning mode, absolute (G90) or incremental (G91). The hole machining data should also be programmed in accordance with the dimensioning mode selected when it is defined.

(2) Interpretation of incremental commands

In the incremental programming mode, the sign of R and Z values has significant meaning. Generally, the cycle axis is first moved in the negative direction (infeed) and then in the positive direction (retraction). However, it is possible to move the Z-axis in the opposite direction in reference to the positioning plane. When programming a fixed cycle in the incremental programming mode, the direction of cycle axis movement can be determined by assigning the proper sign to the R and V values.

Example:
Cycle axis movement direction in the incremental programming mode
3-4. **Positional Relationship among Return Point Level, Point R Level and Point Z Level**

The positional relationship among the three levels along the cycle axis direction must comply with one of the two cases shown below. (The only exception is G87 back boring, where the point R and point Z levels are exchanged.)

![Diagram of positional relationship among Return Point Level, Point R Level, and Point Z Level]

3-5. **Axis Shift**

In the G76 (fine boring) and G87 (back boring) modes, an axis shift is executed at a rapid feedrate. The shift amount and direction may be set using one of the following two methods.

1. **Q Command**
 - The shift amount and direction may be set using a Q command only when Z axis is chosen as the cycle axis at cycle axis of NC optional parameter (fixed cycle).
 - The value of Q is a positive, incremental value. Q commands are given priority over I, J, and K commands, explained below in item (2). Therefore, if a Q command is specified, the shift amount specified by I, J, and/or K commands is ignored. The direction of shift should be set in advance at shift direction and axis in G76, G87 of NC optional parameter (fixed cycle).
 - The shift direction is defined in the machine coordinate system and is the opposite of the direction of the bit when the spindle stops in the orient stop position.

 ![Diagram of shift direction using Q command]

 Example:
 - "+X" is set for the shift direction setting parameter

2. **I, J, and K Commands**
 - I, J, and K commands are used when the cycle axis is not fixed by parameter.
The shift amount and direction of the tool should be specified using (I, J), (K, I), or (J, K) depending on the selected positioning plane. The shift direction is defined in the machine coordinate system.

Example:
If a value is specified for either of I, J, K command pair, the NC regards the other command value is 0.

![Diagram](image)

If "I1.0 J1.0" is specified, the tool shifts in the direction indicated by the arrow symbol by $\sqrt{1^2 + 1^2} = 1.414$.

3-6. **Z-axis G01 Mode Return Function**

In the high speed deep hole drilling cycle (G73) and the deep hole drilling cycle (G83), axis return operation in the Z-axis direction can be executed either in the G00 mode or the G01 mode by making the appropriate parameter setting.

(1) **Switching between G00 and G01**
Choose the Z-axis return mode between G00 and G01 by the setting at Z-AXIS RETURN OPERATION in G73, G83 of the NC optional parameter (FIXED CYCLE).

(2) **Feedrate for Z-axis return in the G01 mode**
Determine the Z-axis return feedrate in G01 mode by the setting at FEEDRATE FOR Z-AXIS RETURN IN THE G01 of the NC optional parameter (FIXED CYCLE).

<table>
<thead>
<tr>
<th>Setting range</th>
<th>1 to 20000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial value</td>
<td>20000 (1 mm/min)</td>
</tr>
<tr>
<td>Unit</td>
<td>mm/min</td>
</tr>
</tbody>
</table>

[Supplement]
The maximum value for the feedrate in the G01 mode differs according to the machine specification. Therefore, the following alarm may occur depending on the value set at FEEDRATE FOR Z-AXIS RETURN IN THE G01 of the NC optional parameter (FIXED CYCLE).

4204 ALARM-D Feedrate command limit over (replacing)
If this alarm occurs, set the value at FEEDRATE FOR Z-AXIS RETURN IN THE G01 of the NC optional parameter (FIXED CYCLE) again to match the specifications of the machine. Since the cutting feed override is valid, the above alarm may also occur depending on the override value; if this happens the override value should be reduced.
3-7. Relationships between Fixed Cycle Functions and Other Functions

(1) Axis Movement Call Mode (MODIN, MODOUT)
If the fixed cycle mode and the axis movement call mode overlap, the MODIN command will call
axis movements after the cycle axis operation has been completed.

(2) Uni-direction Positioning
In the uni-direction positioning mode (G60), the cycle axis operates as follows:
- Positioning in the positioning plane is executed in the uni-direction positioning mode.
- Positioning of the cycle axis is executed in the two-directional positioning mode.
 G60 may be specified in a fixed cycle mode. In contrast to other interpolation mode call
 commands (G00 to G03), G60 does not cancel the active fixed cycle mode. The G60 mode
 specified in the fixed cycle mode is, however, canceled at the same time the fixed cycle
 mode is canceled by G80.

(3) Geometry Enlargement/Reduction Function
If a fixed cycle mode is specified in the geometry enlargement/reduction mode, the following
factors are not subjected to the enlargement/reduction processing.
- Pecking amount (Q) and retraction amounts (d1 and d2) in the G73 and 683 modes
- Shift amount (Q, or I, J, and K) in the G76 and G87 modes

(4) The following items cannot be specified in a fixed cycle mode:
- Plane selection which changes the positioning plane
- Cutter radius compensation (G41, G42)
- Three-dimensional tool offset (G43)
- Tool change (M06)
- Area machining function
- Home position command (G30)

(5) Coordinate Calculation Function
If a coordinate calculation function command is specified with M52 in a fixed cycle mode, the Z-
axis returns to the upper limit level at the last point obtained by coordinate calculation.
Example:

G81X__Y__Z__R__F__
LAAX__Y__I__K__I__K__J__M52

Z-axis returns to the upper limit level at the last post.
3-8. **Notes for Programming a Fixed Cycle**

- In a fixed cycle (G74, G84, G86) mode in which spindle rotation is controlled, if a hole machining cycle is consecutively executed for holes arranged in short intervals with short distance between the specified point level and the point R level, the spindle may fail to reach the programmed speed before starting the machining of hole. In this case, it is necessary to enter a dwell command (G04) in between the hole machining operations.

- A fixed cycle mode can be canceled by specifying G00 to G03 without using G80. If any of G00 to G03 is specified, the fixed cycle mode is canceled at the time the G code is read. However, if these G codes are specified with fixed cycle commands, the fixed cycle mode is not canceled.

 Canceling with Commands G00 through G03

 Example:

 G01 G73 X__ Y__ Z__R__ P__ Q__ F__

 (The specified fixed cycle is executed.)

- The fixed cycle mode and the programmed hole machining data are all cleared when the NC is reset.

- If a fixed cycle is executed in the single block mode, the cycle motion will stop at the end of operations 1 and 5 (M52, M53) or at the end of operation 6 (M54).

It is also possible to stop the cycle after the completion of operation 2 in the illustration above, by selecting does at single block stop at point R level of NC optional parameter (fixed cycle). When selecting this type of operation, the following points must be taken into consideration.

a) The point R level at which the Z-axis stops in single block mode operation is the point R level reached first after the start of a fixed cycle operation. It is not the point R level to which the Z-axis returns in each pecking operation in the G83 deep hole drilling cycle until the specified depth is reached.

b) In the G87 back boring cycle, the point R level reached first is used as the start point for the hole bottom machining. The Z-axis stops at this point if the cycle is executed in the single block mode.

c) If the point R level lies on the position plane, that is, if the positioning point and the point R level are at the same point, the Z-axis stops at the positioning point and the point R level. This means the Z-axis stops two times at the same point.

- If the slide hold function is turned on during a tapping cycle (G74, G84), cycle motion does not stop until the completion of operation 5, even though the SLIDE HOLD lamp lights immediately after pressing the SLIDE HOLD button. If it is pressed during operation 1, 2, or 6, however, cycle operation stops immediately.
• During the execution of G74 or G84 tapping cycle, cutting feedrate override is fixed at 100%. The rapid feed override is valid. For spindle operation, override value is also fixed at 100%.

4. Specification of Return-point Level (G71)

[Function]
The G71 command specifies the return-point level which is used for executing a fixed cycle in the M53 mode (return to the specified level).

[Programming format]
G71 Z__
Z: Indicates the cycle axis.
The coordinate value should be specified as an absolute value in the local coordinate system, regardless of whether the G90 or G91 mode (absolute or incremental) is selected.

[Example program]

```
N1 G90 X0 Y0 Z100.0
N2 G91
N3 G17 G00 X50.0 Y50.0
N4 G71 Z80.0
N5 G81 X50.0 Y50.0 Z -40.0 R -50.0 F100 M53
N6 X50.0 Y50.0
N7 G80
```

NOTICE

1) The return point level must be specified with G71 before M53 is specified.
2) When the NC is reset, the return point is undefined.
3) The return-point level value is modal for each axis, and is not changed until another value is set.
4) Even if the local and/or work coordinate system is changed, the specified return-point level value remains as it is.
5. **High Speed Deep Hole Drilling Cycle (G73)**

[Programming format]

\[
G73 \ X__\ Y__\ Z__\ R__\ P__\ Q__\ F__
\]

Machining Sequence

1. Positioning along the X- and Y-axis at a rapid feedrate
2. Positioning to the point R level at a rapid feedrate
3. Drilling by the pecking amount specified by Q at a cutting feedrate and with the spindle rotating in the forward direction
4. Cutting tool retraction by “d”.
 Set the retraction amount “d” at retraction in G73 cycle (high-speed deep hole) OR G83 CYCLE (DEEP HOLE) WITH I, J COMMAND of the NC optional parameter (fixed cycle).
5. Drilling to the point R level by repeating steps (3) and (4)
6. Dwelling at the point Z level for P seconds
7. Returning to the return-point level at a rapid feedrate
6. Reverse Tapping Cycle (G74)

[Programming format]
G74 X__Y__Z__R__P__Q__F__

Machining Sequence
(1) Positioning along the X- and Y-axis at a rapid feedrate
(2) Positioning to the point R level at a rapid feedrate
(3) Tapping to the point Z level at the specified cutting feedrate with the spindle rotating in the CCW direction.
(4) Dwelling at the point Z level for P seconds, then reversal of the spindle rotating direction to the CW direction.
(5) Returning to the point R level at a cutting feedrate
(6) Dwelling at the point R level for Q seconds, then reversal of the spindle rotating direction back to the CCW direction.
(7) Returning to the return-point level at a rapid feedrate.

[Details]
- Dwell is not executed if a P and/or Q value is not specified. The units of P and Q values are the same as used for the G04 mode dwell command.
- A feed override is disregarded during reverse tapping operation.
- If the SLIDE HOLD button is pressed during the return from the point Z level to the point R level, the cycle stops after the point R level is reached.
- If positioning to the next tapping point is executed at the point R level after the start of the spindle counterclockwise rotation but before the tapping tool is completely disengaged from the workpiece, enter a dwell at this level by specifying Q.
- Both the cutting feedrate override and the spindle speed override value are fixed at 100%. A rapid feed override can be set.
7. Fine Boring (G76)

[Programming format]
G76 X__Y__Z__R__Q__(I__J__) P__F__

Machining Sequence

(1) Positioning along the X- and Y-axis at a rapid feedrate
(2) Positioning to the point R level at a rapid feedrate
(3) Boring to the point Z level at the specified cutting feedrate with the spindle rotating in the forward direction
(4) Dwelling at the point Z level for P seconds, retracting by the amount set at SHIFT DIRECTION AND AXIS IN G76, G87 of NC optional parameter (FIXED CYCLE), then spindle stop in the orientation position. After that, the tool shifts by the shift amount, Q, to the direction the tool bit moves away from the machined workpiece inner surface.
(5) Returning to the return point level at a rapid feedrate
(6) Tool shifts back in the bit direction by the shift amount, Q, then the spindle starts rotating in the clockwise direction.

[Details]
- Retraction amount at the point Z level
 The amount the Z-axis retracts upward from the point Z level is set at SHIFT DIRECTION AND AXIS IN G76, G87 of the NC optional parameter (FIXED CYCLE).
- Shift amount
a) Q is used to specify the shift amount if the cycle axis is fixed as the Z-axis by the setting at SHIFT DIRECTION AND AXIS IN G76, G87 of the NC optional parameter (FIXED CYCLE). The value set must always be positive. The direction for shift motion, +X, -X, +Y, or -Y, should be set using a parameter beforehand. Note that a Q value is modal data and address Q is also used in the G73 and G83 cycles. A Q value is given priority over I and J values.

b) I and J are used to specify the shift amount when the plane is selected using G17, G18, or G19. The relationship between the plane selecting G code and the addresses to be used is shown below.

<table>
<thead>
<tr>
<th>G17</th>
<th>I, J</th>
</tr>
</thead>
<tbody>
<tr>
<td>G18</td>
<td>K, I</td>
</tr>
<tr>
<td>G19</td>
<td>J, K</td>
</tr>
</tbody>
</table>

For addresses I, J, and K, all values are set as incremental values. The shift direction is always defined in the machine coordinate system.

c) If the shift amount is not specified by Q, or I and J, an alarm occurs.

8. Fixed Cycle Cancel (G80)

[Function]

G80 cancels a fixed cycle mode (G73, G74, G76, G81 to G87, and G89). When G80 is executed, all hole machining defining commands including point R and point Z are canceled and the interpolation mode (G00 to G03, G60) valid before the fixed cycle mode was called is restored. At the same time, the M05 code (spindle stop command) is generated. If G00 or G01 is specified preceding the G80 block, however, M05 is not generated.

- Example program that does not generate M05

 G81 X__Y__Z__R__F__
 G00 X__Y__
 G80

- Example program that generates M05

 G81 X__Y__Z__R__F__
 G00
 G80 X__Y__

[Details]

- Fixed cycle modes are also canceled if an interpolation mode call G code (G00, G01, G02, G03), with the exception of G60, is specified.

- If axis movement commands are specified with G80 in the same block, the fixed cycle mode is canceled first and the axis movement commands are executed after that.
9. **Drilling Cycle (G81, G82)**

[Programming format]

G81 X__Y__Z__R__P__F__
G82 X__Y__Z__R__P__F__

- **X,Y**: Coordinate values of hole position
- **Z**: Hole bottom level
- **R**: Point R level
- **P**: Dwell time at hole bottom
- **F**: Feedrate
 - **—**: Rapid feed
 - **—**: Cutting feed

G81 and G82 are used in the same manner.

Machining Sequence

1. Positioning along the X- and Y-axis at a rapid feedrate
2. Positioning to the point R level at a rapid feedrate
3. Drilling to the point Z level at the specified cutting feedrate with the spindle rotating in the clockwise direction
4. Dwelling at the point Z level for P seconds.
5. Returning to the return point level at a rapid feedrate
10. Deep Hole Drilling Cycle (G83)

[Programming format]
G83 X__Y__Z__R__Q__(I__J__) P__F__

- Programming using Q

- Programming using I and J

If a Q value is programmed in the same block as I and J values, the Q value will be given priority.
[Setting values]
Retraction amount d1:
Set at RETRACTION POSITIONING FROM LEVEL ‘R’ TO WORK IN G83 CYCLE (DEEP HOLE) of the NC optional parameter (fixed cycle).
Retraction amount d2:
Set at RETRACTION IN G73 CYCLE (HIGH-SPEED DEEP HOLE) OR G83 CYCLE (DEEP HOLE) WITH I, J COMMAND of the NC optional parameter (fixed cycle).

Machining Sequence

(1) Programming using Q
 a) Positioning along the X- and Y-axis at a rapid feedrate
 b) Positioning to the point R level at a rapid feedrate
 c) Drilling by pecking amount specified by Q at the specified cutting feedrate with the spindle rotating in the forward direction
 d) Returning to the point R level at a rapid feedrate
 e) In the second and later in-feed operations: Positioning at a level “d1” above the previously machined depth at a rapid feedrate and drilling by “Q + d1”.
 f) Returning to the point R level at a rapid feedrate
 g) Drilling to the point Z level by repeating steps e). and f).

(2) Programming using I and J
 a) Positioning along the X- and Y-axis at a rapid feedrate
 b) Positioning to the point R level at a rapid feedrate
 c) Drilling by pecking amount I then retracting by d2. After that, drilling by “I + d2”. The pecking and retraction cycle is repeated until depth J (tool extraction depth) is reached.
 d) Returning to the point R level at a rapid feedrate
 e) Positioning at a level “d1” above the previously machined depth at a rapid feedrate and drilling by “I + d1”. Then step c). is repeated to machine by depth J.
 f) Returning to the point R level at a rapid feedrate
 g) Drilling to the point Z level by repeating steps e). and f).
 h) Dwelling at the point Z level by P seconds.
 i) Returning to the return point level at a rapid feedrate.

[Details]
• No Q designation

J = 0 G73 cycle is executed, using pecking amount I.
I ≥ J G83 cycle is executed, using pecking amount J.
I < J Operation steps c). to i)., explained in item (2) above, are executed.
I = 0 An alarm occurs. (Alarm “Q”)

• Q designated with I and J in the same block
 Operation steps c) to g), explained in (1) above, are executed disregarding I and J values.
11. Tapping Cycle (G84)

[Programming format]
G84 X__Y__Z__R__ (P__) (Q__) F__

Machining Sequence

1. Positioning along the X- and Y-axis at a rapid feedrate
2. Positioning to the point R level at a rapid feedrate
3. Tapping to the point Z level at the specified cutting feedrate with the spindle rotating in the clockwise direction
4. Dwelling at the point Z level for P seconds, then reversal of the spindle rotating direction to the counterclockwise direction
5. Returning to the point R level at a cutting feedrate
6. Dwelling at the point R level for Q seconds, then reversal of the spindle rotating direction back to the clockwise direction
7. Returning to the return-point level at a rapid feedrate

[Details]

- Dwell is not executed if a P and/or Q value is not specified.
 Units of P and Q values are the same as used for the G04 mode dwell command.
- A feed override is disregarded during reverse tapping operation.
- If the SLIDE HOLD button is pressed during the return from the point Z level to the point R level, the cycle stops after the point R level is reached.
- If positioning to the next tapping point is executed at the point R level after the start of the spindle counterclockwise rotation but before the tapping tool is completely disengaged from the workpiece, enter a dwell at this level by specifying Q.
- Both the cutting feedrate override and the spindle speed override value are fixed at 100%. A rapid feed override can be set.
12. Boring Cycle (G85, G89)

[Programming format]
G85 (G89) X__Y__Z__R__P__F__FA=__

Machining Sequence

(1) Positioning along the X- and Y-axis at a rapid feedrate
(2) Positioning to the point R level at a rapid feedrate
(3) Boring to the point Z level at the specified cutting feedrate with the spindle rotating in the clockwise direction
(4) Dwelling at the point Z level for P seconds
(5) Returning to the point R level at F
(6) Returning to the return point level at FA

- If FA is not specified, F is applied for the return operation from the point R level to the return point level.
13. **Boring Cycle (G86)**

[Programming format]
G86 X__Y__Z__R__P__F__

![Diagram of boring cycle]

Machining Sequence

1. Positioning along the X- and Y-axis at a rapid feedrate
2. Positioning to the point R level at a rapid feedrate
3. Boring to the point Z level at the specified cutting feedrate with the spindle rotating in the clockwise direction
4. Dwelling at the point Z level for P seconds. Then, the spindle stops rotating.
5. Returning to the return point level at a rapid feedrate
6. Spindle rotation start in the clockwise direction.

Details

The difference between the G86 boring cycle and the G81/G82 drilling cycles is that the spindle stops at the hole bottom level in the G86 cycle.

- If the distance from the return-point level where the spindle restarts rotating in the clockwise direction to the point R level of the next hole is short, the spindle may not reach the commanded speed. Therefore, it is recommended to enter a dwell command (G04) with an appropriate dwell time before the cycle for boring the next point starts.
14. **Back Boring Cycle (G87)**

Note that this cycle differs somewhat from other fixed cycles.

[Programming format]

G87 X__Y__Z__R__Q__ (I__J__) P__F__

[Setting values]

Retraction amount at the point Z level: Set at retraction for G76/G87 (fine boring/back boring) before orientation of NC optional parameter (fixed cycle).

The return point level may be specified from the following three levels using an M code.

- **M52** Upper limit level
- **M53** Specified point level (to be set in advance with G71)
- **M54** Start point level

Machining Sequence

1. Positioning along the X- and Y-axis at a rapid feedrate. Then, the spindle stops (spindle orientation).
2. Shifting by shift amount Q in the direction opposite the tool bit direction
3. Positioning to the point R level at a rapid feedrate
4. At the point R level, the tool shifts back by the shift amount. Then, the spindle starts rotating in the clockwise direction.
5. Boring to the point Z level in the position direction of the Z-axis at the specified cutting feedrate
6. Dwelling at the point Z level for P seconds. After that the Z-axis moves back by the amount set for the parameter and the spindle stops (spindle orientation). The tool shifts by the shift amount Q in the direction opposite the tool bit direction.
7. Returning to the return point level at a rapid feedrate
8. Shifting back by shift amount Q
SECTION 8 COORDINATE CALCULATION FUNCTION (PATTERN FUNCTION) (OPTIONAL)

The coordinate calculation function calculates the coordinate values of points on a line, grid, or circle using one command. Combining this function with the fixed cycle function and the axis movement call function allows hole machining such as drilling to be conducted at points on a line, grid, or circle by designating one command.

1. Table of Functions

<table>
<thead>
<tr>
<th>Item</th>
<th>Mnemonic Code</th>
<th>Function Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omit</td>
<td>OMIT</td>
<td>Deletes coordinate calculation of a specified point.</td>
</tr>
<tr>
<td>Restart</td>
<td>RSTRT</td>
<td>Starts coordinate calculation from a certain point on a line, grid, or circle.</td>
</tr>
<tr>
<td>Line at angle</td>
<td>LAA</td>
<td>Outputs the coordinate values of points on a line which has an angle.</td>
</tr>
<tr>
<td>Grid X</td>
<td>GRDX</td>
<td>Outputs the coordinate values of points on a grid.</td>
</tr>
<tr>
<td>Grid Y</td>
<td>GRDY</td>
<td>(The calculating sequence is distinguished by X and Y.)</td>
</tr>
<tr>
<td>Double grid X</td>
<td>DGRDX</td>
<td>Outputs the coordinate values of points on two grids.</td>
</tr>
<tr>
<td>Double grid Y</td>
<td>DGRDY</td>
<td>(The calculating sequence is distinguished by X and Y.)</td>
</tr>
<tr>
<td>Square X</td>
<td>SQRX</td>
<td>Outputs the coordinate values of points on four sides of a rectangle, surrounding a grid.</td>
</tr>
<tr>
<td>Square Y</td>
<td>SQRY</td>
<td>(The calculating sequence is distinguished by X and Y.)</td>
</tr>
<tr>
<td>Bolt hole circle</td>
<td>BHC</td>
<td>Outputs the coordinate values of points on a circle.</td>
</tr>
<tr>
<td>Arc</td>
<td>ARC</td>
<td>Outputs the coordinate values of points on an arc.</td>
</tr>
</tbody>
</table>
2. General Rules of Coordinate Calculation

2-1. Programming Format for Coordinate Calculation

The programming format is as indicated below.

(Mnemonic code)
Hp _ Vp _ I _ J _ K _ P _ Q _ R _

Hp, Vp: Represent the coordinate values of the reference point where coordinate calculation starts.
I, J, K, P, Q, R: Parameters used for coordinate calculation.

(1) Reference point for starting coordinate calculation
The reference point is specified using the names of axes which constitute the currently selected plane. If the coordinate value of the reference point is not specified, the actual position value is taken as the coordinate value of the reference point.
The relation of plane selection to Hp (horizontal axis) and Vp (vertical axis) is as listed below.

<table>
<thead>
<tr>
<th>Axis</th>
<th>Plane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G17</td>
</tr>
<tr>
<td>Hp (horizontal axis)</td>
<td>X</td>
</tr>
<tr>
<td>Vp (vertical axis)</td>
<td>Y</td>
</tr>
</tbody>
</table>

The reference point is designated in a local coordinate system. The coordinate values to be specified vary according to the selected dimensioning mode - absolute dimensioning mode (G90) or incremental dimensioning mode (G91).

Example:

Absolute dimensioning mode
G90 LAA Xxa Yya
Incremental dimensioning mode
G91 LAA Xxb Yyb

(2) Parameters used for coordinate calculation
Parameters used by a coordinate calculation function must be designated in the same block as the mnemonic code that specified the specific coordinate calculation function. These parame-
terns are valid only in the block where they are specified and cleared after the completion of coordinate calculation. The relationship between the coordinate calculation function and the parameters is indicated below.

<table>
<thead>
<tr>
<th>Item</th>
<th>Mnemonic Code</th>
<th>Reference Point</th>
<th>Parameter</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omit</td>
<td>OMIT</td>
<td>(B)</td>
<td></td>
<td>More than one omit point may be specified.</td>
</tr>
<tr>
<td>Restart</td>
<td>RSTRT</td>
<td>(B)</td>
<td></td>
<td>Only one restart point may be specified.</td>
</tr>
<tr>
<td>Line at angle</td>
<td>LAA</td>
<td>(A) (A) (B)</td>
<td>(B) (A1)</td>
<td>I and K must be specified in pairs. K may be omitted if “K = 1”.</td>
</tr>
<tr>
<td>Arc</td>
<td>ARC</td>
<td>(A) (A) (B)</td>
<td>(B) (A1)</td>
<td>Q and K must be specified in pairs. K may be omitted if “K = 1”.</td>
</tr>
<tr>
<td>Grid</td>
<td>GRDX GRDY</td>
<td>(A) (A) (B) (B)</td>
<td>(B) (B)</td>
<td></td>
</tr>
<tr>
<td>Double grid</td>
<td>DGRDX DGRDY</td>
<td>(A) (A) (B)</td>
<td>(B) (B)</td>
<td>(A2) (A3)</td>
</tr>
<tr>
<td>Square</td>
<td>SQRX SQRY</td>
<td>(A) (A) (B)</td>
<td>(B) (B)</td>
<td></td>
</tr>
<tr>
<td>Bolt hole circle</td>
<td>BHC</td>
<td>(A) (A) (B)</td>
<td>(B) (B)</td>
<td></td>
</tr>
</tbody>
</table>

(A): May be omitted. If omitted, the actual position is regarded as the reference point.
(B): Must not be omitted. An alarm occurs if omitted.
(C): May be omitted.
If omitted, “1” is assumed to apply for (A1), I/2 for (A2), and J/2 for (A3).
Data set for a parameter, shown as a blank column above, is disregarded.
2-2. Plane on Which Coordinate Calculation is Performed, and Motion Axes

Coordinate values are calculated on the plane which is selected when a pattern command is designated, and positioning at each calculated point is executed using the axes which are determined in accordance with the plane selection.

Example:
Pattern development on the WX plane

(a) When the coordinate calculation function is used in combination with a fixed cycle function, the coordinate value of the axis which is perpendicular to the plane at the end of pattern operation is not always identical to the coordinate value which was active right before pattern designation.

(b) When return to the upper limit level (M52) is specified, the cycle axis returns to this level only after the last point of the pattern has been machined.

2-3. Positioning at Calculated Pattern Points

Positioning to a calculated point is executed in the G00, G60, or G01 mode, or in the mode determined by fixed cycle commands. An alarm occurs if positioning is attempted in the G02 or G03 mode.

2-4. Others

(1) Processing for single block mode operation
 If the pattern function is executed in the single block mode, operation halts after positioning at the calculated pattern points has been completed.

(2) A maximum of 65535 points can be calculated by one pattern command.

(3) A pattern command cannot be designated while any of the following modes is valid.
 - Circular interpolation mode (G02, G03)
 - Cutter radius compensation mode (G41, G42)
 - 3-D tool offset mode
 - During coordinate calculation

If output of the coordinate values of the last point is deleted using the OMIT command, the upper limit level return is not executed.
3. **Omit (OMIT)**

[Function]
This function is normally used in combination with other coordinate calculation functions and deletes output of the coordinate value which is calculated using the coordinate calculation function.

[Programming format]

```
OMIT Rn1__ Rn2__ Rn3__............Rnm__
```

R: Coordinate point number (n) to be deleted (m ≤ 30)

(1) A maximum of 30 omit point numbers may be specified for one pattern command.

(2) The maximum number usable with R is 65535.

If items 1. and 2. are not satisfied in a pattern, the pattern must be divided into two or more patterns.

[Details]
- Specify OMIT before a pattern command is specified. It is cleared after it is executed in the pattern command that appears next.
- Define the omit numbers according to the order of the points at which coordinate values are calculated. In the OMIT block, these numbers may not necessarily be specified in ascending order. If the specified omit number is larger than the maximum point number of the points calculated using the pattern command specified next, this omit number is disregarded.

[Example program]

```
NCYL
OMIT
BHC
G81
R3
X0
G56
R7
Yo
R__Z__F__H04
I50  J45  K8
```

- In this example, a drilling cycle called by G81 is executed at positions on the circle (BHC) taking (X0, Y0) as the reference point. The drilling cycle is not executed at the 3rd and 7th points due to the designation of R3 and R7.
4. **Restart (RSTRT)**

[Function]
This function restarts machining from a required point among the points for which coordinate values are calculated using the coordinate calculation function.

Generally, the restart data (RSTRT command and restart point number) is entered in the MDI mode.

[Programming format]
RSTRT Rn

R: Coordinate point number (n) at which machining is restarted

[Details]
- If the specified omit number is larger than the maximum point number of the points calculated using the pattern command specified next, the next pattern command is disregarded.
- If more than one restart command is designated, the last restart command, or, in other words, the restart command designated right before the pattern command specified next, becomes valid.

![Coordinate pattern](image)

[Example program]

```
N011  G81  G56  X0  Y0  R__Z__F__H
RSTRT  R12  ← Enter the command in the MDI mode.
N012  GRDX  I20  J10  K4  P3
```

- In this example, a drilling cycle called by G81 is conducted at positions arranged in a grid pattern (GRIDX) taking (X0, Y0) as the reference point. Designation of “RSTRT R12” starts drilling from hole No. 12 while skipping holes No. 1 to No. 11.
5. **Line at Angle (LAA)**

[Function]
This function calculates the coordinate values of points arranged at irregular intervals (d1, d2, and so forth) on a line which forms an angle θ to the horizontal axis. Here, the actual position or the point defined by the specified coordinate values is taken as the reference point. When points are arranged at regular intervals, designate the number of these points (n).

[Programming format]

LAA Hp__Vp__I ± d1Kn1 ± d2 Km2 J ± θ

Hp : Coordinate value of the reference point on the horizontal axis
Vp : Coordinate value of the reference point on the vertical axis
I : Interval (d) When a negative value is specified, coordinate values are calculated on the line that extends in the symmetric direction in reference to the start point.
K : Number of points (n) arranged at regular intervals (d) The maximum number is 65535.
J : Angle of the line in reference to the horizontal axis (θ)

The angle is set in units of 1 degree, 0.001 degree, or 0.0001 degree in accordance with the selected unit system. The angle is measured in the CCW direction.

[Details]
- If address K is omitted, it is regarded as “K”.
- Up to ten intervals can be designated in one block.
- When one pair of I and K is designated with J, the LAA command can be used as a unit-pitch line at angle command.
- The coordinate values of the reference point are not output.
- The order for designating I, J, and K must be either J, I, K, I,... or I, K, I, K J.
6. **Grid (GRDX, GRDY)**

[Function]
This function calculates the coordinate values of points arranged in the grid pattern, composed of the points (nx) placed at an interval of (dx) in parallel with the horizontal axis and of the points (ny) placed at an interval of (dy) in parallel with the vertical axis. Here, the actual position or the point defined by the specified coordinate values is taken as the reference point.

- **GRDX**: The coordinate values are calculated along the horizontal axis starting from the reference point.
- **GRDY**: The coordinate values are calculated along the vertical axis starting from the reference point.

[Programming format]

```
GRDX(GRDY) Hp__Vp__I ± dx J ± dy  Knx  Pny
```

- **Hp**: Coordinate value of the reference point on the horizontal axis
- **Vp**: Coordinate value of the reference point on the vertical axis
- **I**: Interval along the horizontal axis (dx)
 - When a positive value is specified for "dx", coordinate calculation is performed in the positive direction of the horizontal axis.
 - When a negative value is specified for "dx", coordinate calculation is performed in the negative direction of the horizontal axis.
- **J**: Interval along the vertical axis (dy)
 - When a positive value is specified for "dy", coordinate calculation is performed in the positive direction of the vertical axis.
 - When a negative value is specified for "dy", coordinate calculation is performed in the negative direction of the vertical axis.
- **K**: Number of points arranged along the horizontal axis (nx) (Positive integer)
- **P**: Number of points arranged along the vertical axis (ny) (Positive integer)

![Diagram of grid pattern](image)

Start point (X0, Y0)

```
GRDX  X0  Y0  I25  J -15  K4  P3
```
SECTION 8 COORDINATE CALCULATION FUNCTION (PATTERN FUNCTION) (OPTIONAL)

[Supplement]
- The maximum number of points on a grid \((nx + 1) \times (ny + 1) - 1\) is 65535.
- The number of the last point is \((nx + 1) \times (ny + 1) - 1\).
- The coordinate values of the reference point are not output.

7. Double Grid (DGRDX, DGRDY)

[Function]
This function calculates the coordinate values of points arranged in the double grid pattern, composed of the reference grid and the other grid defined by shifting the reference grid. The pattern of the reference grid is composed of the points \((nx)\) placed at regular intervals \((dx1)\) in parallel with the horizontal axis and of the points \((ny)\) placed at regular intervals \((dy1)\) in parallel with the vertical axis. The second grid pattern is defined by shifting the reference grid both in the X- and Y-axis directions by \("dx2\) and \("dy2\), respectively. Here, the actual position or the point defined by the specified coordinate values is taken as the reference point.

- **DGRDX**: The coordinate values are calculated along the horizontal axis starting from the reference point.
- **DGRDY**: The coordinate values are calculated along the vertical axis starting from the reference point.

[Programming format]

\[
\begin{align*}
\text{DGRDX} & \quad \text{Hp} \quad \text{Vp} \quad I \pm dx \quad J \pm dy1 \quad Knx \quad Pny \quad Q \pm dx2 \quad Rdy2 \\
\text{DGRDY} & \quad \quad \quad \\
\end{align*}
\]

Hp : Coordinate value of the reference point on the horizontal axis
Vp : Coordinate value of the reference point on the vertical axis
I : Interval along the horizontal axis \((dx1)\)
\hspace{1cm} When a positive value is specified for \("dx1\), coordinate calculation is performed in the positive direction of the horizontal axis.
\hspace{1cm} When a negative value is specified for \("dx1\), coordinate calculation is performed in the negative direction of the horizontal axis.
J : Interval along the vertical axis \((dy1)\)
\hspace{1cm} When a positive value is specified for \("dy1\), coordinate calculation is performed in the positive direction of the vertical axis.
\hspace{1cm} When a negative value is specified for \("dy1\), coordinate calculation is performed in the negative direction of the vertical axis.
K : Number of points arranged along the horizontal axis \((nx)(Positive integer)\)
P : Number of points arranged along the vertical axis \((ny)(Positive integer)\)
Q : Shift interval in the horizontal-axis direction \((dx2)\)
\hspace{1cm} The sign used for \("dx2\) has the same meaning as for \("dx1\).
R : Shift interval in the vertical-axis direction \((dy2)\)
\hspace{1cm} The sign used for \("dy2\) has the same meaning as for \("dy1\).

[Details]
- When \("dx2\) is equal to \("dx1/2\), designation of Q can be omitted. Similarly, when \("dy2\) is equal to \("dy1/2\), designation of R can be omitted.
- The maximum number of points on a double grid \((2(nx + 1)(ny + 1) - 1)\) is 65535.
• The number of points on the shift grid is the same as that on the reference grid (nx, ny).
• The coordinate values of the reference point are not output.

[Example program]
Example 1:

Coordinate value calculation order for double grid defined by DGRDX

```
DGRDX  Xo  Yo  I20  J  -15  K3  P2  Q13  R  -8
```

Example 2:

Coordinate value calculation order for double grid defined by DGRDY

```
DGRDY  Xo  Yo  I20  J  15  K3  P2  Q13  R  8
```
8. **Square (SQRX, SQRY)**

[Function]
This function calculates the coordinate values of points arranged in the square pattern, composed of the points \((nx) \) placed at an interval of \((dx) \) parallel to the horizontal axis and of the points \((ny) \) placed at an interval of \((dy) \) parallel to the vertical axis. Here, the actual position or the point defined by the specified coordinate values is taken as the reference point.

- **SQRX**: The coordinate values are calculated along the horizontal axis starting from the reference point.
- **SQRY**: The coordinate values are calculated along the vertical axis starting from the reference point.

[Programming format]

\[
\begin{align*}
\text{SQRX} & \quad \text{Hp} \quad \text{Vp} \quad \text{I} = dx \quad \text{J} = dy1 \\
\text{SQRY} & \quad \text{Hp} \quad \text{Vp} \quad \text{I} = \text{dx} \quad \text{J} = \text{dy1} \\
\end{align*}
\]

- **Hp** : Coordinate value of the reference point on the horizontal axis
- **Vp** : Coordinate value of the reference point on the vertical axis
- **I** : Interval along the horizontal axis \((dx1) \)
 - When a positive value is specified for \("dx1" \), coordinate calculation is performed in the positive direction of the horizontal axis.
 - When a negative value is specified for \("dx1" \), coordinate calculation is performed in the negative direction of the horizontal axis.
- **J** : Interval along the vertical axis \((dy1) \)
 - When a positive value is specified for \("dy1" \), coordinate calculation is performed in the positive direction of the vertical axis.
 - When a negative value is specified for \("dy1" \), coordinate calculation is performed in the negative direction of the vertical axis.
- **K** : Number of points arranged along the horizontal axis \((nx) \) (Positive integer)
- **P** : Number of points arranged along the vertical axis \((ny) \) (Positive integer)

\[
\begin{align*}
\text{SQRX} & \quad \text{Xo} \quad \text{Yo} \quad \text{I12} \quad \text{J8} \quad \text{K4} \quad \text{P3}
\end{align*}
\]

[Supplement]
- The maximum number of points on a square \((2(nx + ny) - 1) \) is 65535.
- The coordinate values of the reference point are not output.
9. Bolt Hole Circle (BHC)

[Function]
This function calculates the coordinate values of the points arranged on the circumference of a circle that has its center at the actual position or a point defined by the specified coordinate values. The radius of the circle is “r” and “n” points are arranged at regular intervals starting from the position at angle q to the horizontal axis.

[Programming format]

\[\text{BHC } H_p V_p I r J \pm \theta K \pm n \]

- \(H_p \): Coordinate value of the center (horizontal axis)
- \(V_p \): Coordinate value of the center (vertical axis)
- \(I \): Radius of the circle (r) (Positive value)
- \(J \): Start angle (θ)
 - The angle is set in units of 1 degree, 0.001 degree, or 0.0001 degree in accordance with the selected unit system.
 - The angle is measured in the CCW direction.
- \(K \): Number of points (n)
 - Coordinate values are calculated in the CCW direction when a positive value is set for "n".
 - Coordinate values are calculated in the CW direction when a negative value is set for "n".
 - The maximum number of points is 65535.
10. **Arc (ARC)**

[Function]
This function calculates the coordinate values of the points arranged on the circumference of a circle that has its center at the actual position or a point defined by the specified coordinate values. The radius of the circle is “r” and the points are arranged at irregular intervals (Δθ1, Δθ2, ..) starting from the position at angle θ to the horizontal axis.

If more than two points are arranged at regular intervals (Δθ) consecutively, the number of such points should be specified.

[Programming format]

```
ARC  Hp  Vp  Ir  Q  ±θ1  Kn1  Q  ±θ2  kn2
```

- **Hp**: Coordinate value of the center (horizontal axis)
- **Vp**: Coordinate value of the center (vertical axis)
- **Ir**: Radius of the circle (r) (Positive value)
- **Q**: Irregular angular interval (θ)
 - The angle is set in units of 1 degree, 0.001 degree, or 0.0001 degree in accordance with the selected unit system. The angle is measured in the CCW direction.
- **Kn**: Number of points arranged at irregular angular interval.
 - The maximum number of points is 65535.
- **J**: Start angle (θ)
 - The angle is set in units of 1 degree, 0.001 degree, or 0.0001 degree in accordance with the selected unit system. The angle is measured in the CCW direction.

Example:

```
ARC  Xo  Yo  I50  Q15  K3  Q30  K2  J30
```

Details
- If K is omitted, “K1” is assumed to apply.
- Up to ten Q commands, specifying an irregular angular interval, can be specified in one block.
- When one pair of Q and K is specified with I and J, the ARC command can be used as a unit-pitch arc command.
Area machining functions are used to machine the top, periphery or inside surface of a rectangular area with a single command. The area to be machined must be formed by four straight lines which intersect at right angles. The direction of cutting is in the longitudinal direction of the rectangular area.

The explanation below assumes that the X-Y plane is the machining plane and the Z-axis is cycle axis. The explanation is similar for the other planes.

1. **List of Area Machining Functions**

<table>
<thead>
<tr>
<th>Function</th>
<th>Mnemonic Code</th>
<th>Area to be Machined</th>
<th>Cutting Direction</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face milling</td>
<td>FMILR</td>
<td>Top face of the area (surface)</td>
<td>Longitudinal</td>
<td>Tool-ON</td>
</tr>
<tr>
<td></td>
<td>FMILF</td>
<td></td>
<td>direction of</td>
<td>Tool-OFF</td>
</tr>
<tr>
<td>Pocket milling</td>
<td>PMIL</td>
<td>Inside</td>
<td>Spiral</td>
<td>Zigzag</td>
</tr>
<tr>
<td></td>
<td>PMILR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Round milling</td>
<td>RMILO</td>
<td>External periphery</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RMILI</td>
<td>Internal periphery</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

2. **Area Machining Operations**

2-1. **Basic Operations**

Area machining consists of the basic operations shown below.

- Operation 1: Positioning in the currently selected plane to a position near the reference point
- Operation 2: Positioning of the cutting axis to the point R level
- Operation 3: Cutting in of the cycle axis
- Operation 4: Area machining
- Operation 5: Retraction of the cutting tool from the machined surface to the point R level

- Operations 3, 4, and 5 are repeated as necessary depending on the amount of stock to be removed. Infeed for the machining in the next level is always executed at the first positioning point.
- Area machining is executed in the currently selected plane, and the axis vertical to the machining plane is selected as the cycle axis.
- If M52 is specified in a program while area machining is being executed with the Z-axis as the cycle axis, the Z-axis will be returned to the upper limit level after the final cutting.
2-2. Tool Movements

(1) Face milling (FMILR)

(2) Face milling (FMILF)

(3) Round milling (RMILO)
(4) Round milling (RMILI)

Reference point

(5) Pocket milling (PMIL)

Reference point

(6) Pocket milling (PMILR)

Reference point
3. **Area Machining Plane and Cycle Axis**

- The plane in which operations 1 and 4, defined in “Basic Operations”, are executed is determined by the designation of G17, G18, or G19 for plane selection. Hereafter, the selected plane is called the area machining plane.

- The cycle axis is the one vertical to the area machining plane and it is represented by X, Y, Z, or an axis parallel to them.

<table>
<thead>
<tr>
<th>Plane Selection Code</th>
<th>Area Machining Plane</th>
<th>Cycle Axis</th>
<th>Plane Composing Axes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xp-Yp plane</td>
<td>Zp</td>
<td>Xp Yp</td>
</tr>
<tr>
<td>G17</td>
<td>Xp-Yp plane</td>
<td>Zp</td>
<td>Xp Yp</td>
</tr>
<tr>
<td>G18</td>
<td>Zp-Xp plane</td>
<td>Yp</td>
<td>Zp Xp</td>
</tr>
<tr>
<td>G19</td>
<td>Yp-Zp plane</td>
<td>Xp</td>
<td>Yp Zp</td>
</tr>
</tbody>
</table>

Xp: X- or U-axis
Yp: Y- or V-axis
Zp: Z- or W-axis

- The plane selection code automatically determines two cycle axes; the address specified in the area machining command block to define the finishing surface level determines the actual cycle axis.
4. General Rules

The following explanations assume that the area machining plane is the XY plane and that the infeed axis is the Z-axis. The explanation is similar for the other planes.

4-1. General Command Format

(Mnemonic code)
Xp Yp Zp I J K P Q R D F FA = FB =
Mnemonic code: Area machining function code

Xp: X-coordinate value of the reference point (Horizontal axis coordinate value)
Yp: Y-coordinate value of the reference point (Vertical axis coordinate value)
Zp: Z-coordinate value of finish surface level (Cycle axis coordinate value)
I: Length from the reference point in the X-axis direction (Horizontal length from the reference point)
J: Length from the reference point in the Y-axis direction (Vertical length from the reference point)
K: Finish allowance
P: Percentage of cutting width
Q: Depth of cut of each cycle
R: Rapid retraction position (for cycle axis)
D: Cutter radius compensation number

FA, FB: Feedrate

[Details]

- Xp, Yp, and Zp represent the X-axis or U-axis, the Y-axis or V-axis, and the Z-axis or W-axis, respectively.
- FA and FB are used in the round milling and pocket milling cycles.
- Xp and Yp should designate the axes which define the area machining plane.
- Zp should designate the cycle axis which is vertical to the plane defined by Xp and Yp.
- The K value must be such that the machining allowance is positive. The following requirements must be met, otherwise an alarm occurs.

In the G90 mode: |K| < |Z|
In the G91 mode: |K| < |R - Z|

4-2. Area Machining Functions and Commands to be Used

<table>
<thead>
<tr>
<th>Item</th>
<th>Reference Point</th>
<th>Finish Surface Level</th>
<th>Area Definition</th>
<th>Finish</th>
<th>Cutting Width (%)</th>
<th>Depth of Cut Per Cycle</th>
<th>Level</th>
<th>Cutter Radius Compensation No.</th>
<th>Feedrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face Milling</td>
<td>(A)</td>
<td>(A)</td>
<td>(B)</td>
<td>(B)</td>
<td>(C)</td>
<td>(C)</td>
<td>(B)</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>Pocket Milling</td>
<td>(A)</td>
<td>(A)</td>
<td>(B)</td>
<td>(B)</td>
<td>(C)</td>
<td>(C)</td>
<td>(B)</td>
<td>(B)</td>
<td>(C)</td>
</tr>
<tr>
<td>Round Milling</td>
<td>(A)</td>
<td>(A)</td>
<td>(B)</td>
<td>(B)</td>
<td>(C)</td>
<td>(C)</td>
<td>(B)</td>
<td>(B)</td>
<td>(C)</td>
</tr>
</tbody>
</table>

[Explanation of the above table]
• Addresses designated with a single circle (A) may be omitted. If omitted, the coordinate value of the current position is used.

• Addresses designated with a double circle (B) must always be specified. An alarm occurs if any of these addresses is not specified. However, F may be omitted if it has been specified in a previous block.

• Addresses designated with a triangle (C) may be omitted. If any of these addresses is not specified, the value indicated below is regarded.

• D, D00 or a number which calls zero cutter radius must not be specified for the cutter radius compensation number.

• The setting range of the cutting width, P, is “1” to “100”. Any value outside this range will result in an alarm.

• If a value is specified for a blank box address, it is disregarded.

4-3. Data Entry in Incremental/Absolute Mode

Four addresses for an area machining function must be specified depending on the selected dimensioning mode, incremental or absolute. They are: the coordinate values of the reference point (Xp, Yp), the finish surface level (Zp), and the rapid retraction level (R). How these values differ depending on the dimensioning mode is shown in the illustration below.

![Diagram of Absolute and Incremental Mode](image)

In the incremental mode, the direction of cycle axis infeed is determined by the sign specified preceding R and Z. The illustration above shows the operation when a negative value is specified for both R and Z (R < 0, Z < 0).
4-4. **Relationship among Present Point, Point R Level, and Finish Surface Level**

- The positional relationship among the present point, point R level, and finish surface level complies with one of the two cases shown below.
- The surface level on which the finish allowance is left must lie between the point R level and finish surface level.

4-5. **Definition of Machining Area (I, J)**

The machining area is defined by I and J values, and the signs of I and V values. How the areas are defined according to the signs specified preceding the I and J values is shown below. The areas are defined independently of the direction of the cycle axis infeed described in “Relationship among Present Point, Point R Level, and Finish Surface Level”.
4-6. Notes on Area Machining

- The first positioning point will be located near the specified reference point (Xp, Yp). The position varies depending on the specified area machining mode. Refer to “Face Milling Functions”, “Pocket Milling”, and “Round Milling Functions”.

- The finish allowance may be identical for both the side and top surface.

- An area machining cycle is always executed with the spindle rotating in the forward direction (M03). If the spindle is stopped or it is rotating in the reverse direction when an area machining cycle is specified, M03 is automatically generated and executed to rotate the spindle in the forward direction. Note that, even in such a case, the M03 mode remains valid after the completion of the cycle.

- The cutter diameter is calculated as twice the cutter radius compensation value. Since this value is treated as the actual cutter diameter when an area machining cycle is executed, special care must be taken if the compensation value stored in “Dnn” differs from the actual cutter radius.

- Restrictions
 The area machining function cannot be specified in the following modes:
 - Circular interpolation, or helical cutting modes (G02, G03)
 - Cutter radius compensation mode (G41, G42)
 - Three-dimensional tool offset mode (G44)
 - Axis move call mode (MODIN)
 - Fixed cycle mode (G73 - G89)
5. **Face Milling Functions (FMILR, FMILF)**

[Function]
The face milling function uses the specified coordinate values as a reference point and cyclically machines the workpiece surface at a certain depth of cut (Q) over the range specified by the X- and Y-axis lengths (I and J) until the final finish allowance (K) remains on the finish surface level (Z). There are two types of face milling functions, depending on the tool movement:

- **FMILR** in which the tool remains on the workpiece during operation
- **FMILF** in which the tool moves off of the workpiece to shift to the next cutting path

[Programming format]

```
\{ FMILR \}  X + x  Y + y  Z + z  I ± dx  J ± dy  kfi  P%  Qdp  R ± rz  Dnn  F__
\{ FMILF \}
```

- **X**: X coordinate value (x) of reference point
 - If omitted, the X coordinate value of the current point is regarded as that of the reference point.
- **Y**: Y coordinate value (y) of reference point
 - If omitted, the Y coordinate value of the current point is regarded as that of the reference point.
- **Z**: Position of finish surface (z)
 - In the G90 mode: Height from the programming zero to the finish surface level
 - In the G91 mode: Distance from the point R level to the finish surface level
- **I**: Length of the rectangle to be cut along the X-axis (dx)
 - Length referenced to the reference point (x)
- **J**: Length of the rectangle to be cut along the Y-axis (dy)
 - Length referenced to the reference point (y)
- **K**: Finish allowance (fl)
 - If omitted, “f1 = 0” is regarded.
- **P**: Cutting width expressed in percent (%)
 - Ratio, in percentage terms, of the cutting width to the cutter diameter. Although the ratio is expressed as a percentage, the percent symbol (%) must not be specified.
 - If omitted, “P70” (70%) is assumed to apply.
- **Q**: Depth of cut (dp)
 - If omitted, the cutter reaches the surface “finish surface position + finish allowance (K)” in a single cut.

Number of cuts: The number of cuts repeated to reach the level indicated above is calculated as indicated below.

\[
n = \text{Fup} \left(\frac{\text{Shorter side} + 5 \text{ mm}}{D \times 2 \times \frac{Q}{100}} \right)
\]

- **R**: Rapid retraction level (rz)
- **D**: Cutter radius compensation number (nn)
- **F**: Feedrate

The value set at the cutter radius compensation number D is doubled when depth of cut is calculated.
Tool-ON type (Tool remains on workpiece) (FMILR)

The reference point is established at \((X_0, Y_0)\).
The cutting surface (rectangle) is defined by \(I_{500}\) and \(J_{300}\).
The cutter has a radius specified by \(D_{01}\).
The rapid feed level is set by \(R_{12}\).
The cutter is infed by the amount \(Q = 5\ mm\ (0.20\ in.)\).
At this level, area machining is carried out with a cutting width ratio of \((J + 5)/n\) at a feedrate of \(F_{400}\).
After each cycle of surface machining, the cutter is infed by the amount \(Q = 5\ mm\ (0.20\ in.)\).
Machining is repeated until the level where finish allowance, \(K = 0.2\ mm\ (0.008\ in.)\), is left on the finish surface level.
Details of axis movements will be described on later pages.

\[\text{Cutting width} = \frac{J + 5}{n} \]

Tool-OFF type (Tool moves off of workpiece) (FMILF)

In the FMILF mode, although the Z-axis moves in the same way as in the FMILR mode, on the machining surface, the cutter is fed to a point where the cutter is disengaged from the workpiece before it is positioned to the next tool path.
Positioning of a cutter

(1) First positioning

- In the narrower direction of a workpiece, the cutter is positioned so that the specified width of cutting* is engaged on the workpiece.
 Width of cutting = (Shorter side + 5 mm / n)

- In the wider direction of a workpiece, the cutter is positioned so that its periphery is 5 mm (0.20 in.) away from the workpiece.

(2) Cutting path in the longitudinal direction

- FMILR (Workpiece-ON type)
 Machining continues until the center of the cutter moves 5 mm (0.20 in.) away from the workpiece.

- FMILF (Workpiece-OFF type)
 Machining continues until the outside diameter of the cutter moves 5 mm (0.20 in.) away from the workpiece.

- I = J

For both the FMILR and the FMILF function, cutting is performed in the X direction when I equals J.
(3) Cutting path along the shorter sides of a workpiece (from the reference point)

\[\text{Shorter side} + 5\text{mm} \times i \text{ - Cutter radius compensation value} \]

\(i = 1, 2, 3,... \)

\(n = \text{number of cuts} \)

(4) Final cutting path

The cutter is positioned so that the periphery of the cutter projects 5 mm (0.20 in.) from the workpiece. Machining continues until the cutter periphery is 5 mm (0.20 in.) away from the workpiece.

(5) Depth of cut in the Z-axis direction

- Starting at the specified point R level, face milling operation continues by repeating infeed (specified depth of cut (Q)) and the face milling cycle at each level until the level of “finish surface level + finish allowance (K)” is reached.
- If the depth of the cut (Q) is greater than the stock to be removed (R - (Z + K)), the cutting is performed in one infeed.

(6) Tool path for the workpiece with width smaller than cutting width
• Positioning point
 • Along the shorter side of the workpiece, positioning is performed so that the cutter periphery projects 5 mm (0.20 in.) from the workpiece.
 • Along the longer side of the workpiece, positioning is performed so that the cutter periphery is 5 mm (0.20 in.) away from the workpiece.
• End-of-machining point
 Machining continues until the cutter periphery reaches a point 5 mm (0.20 in.) away from the workpiece.

6. Pocket Milling (PMIL, PMILR)

The pocket milling function is classified into two types: zigzag (PMIL) and spiral (PMILR). These two types of functions are described below.

6-1. Zigzag Pattern Pocket Milling Function (PMIL)

[Function]
The zigzag pattern pocket milling function uses the specified coordinate values as a reference point and cyclically machines the rectangular pocket range specified by the X- and Y-axis lengths (I and J) at a certain depth of cut (Q) until the final finish allowance (K) remains on the finish surface level (Z). In the pocket milling operation, finish allowance (K) is also left on the side faces of the pocket in the X- and Y-axis directions.

• Operation
 a) The cutter is infeed by the specified depth of cut, Q.
 b) The cutter moves inside the specified rectangular pocket range in a zigzag pattern.
 c) Steps 1) and 2) are repeated until only the finish allowance remains on the finish surface in the Z-direction. Then, a rectangle 1 mm (0.04 in.) larger than the rectangle machined in step 2) is machined.

[Programming format]
PMIL X__ Y__ Z__ I__ J__ K__ P__ Q__ R__ D__ F__ FA =__ FB =__
 X: X coordinate value of start point
 If omitted, the X coordinate value of the current point is regarded as that of the start point.
SECTION 9 AREA MACHINING FUNCTIONS (OPTIONAL)

Machining Sequence

Before starting the PMIL operation, the function checks if the programmed operation is possible based on the programmed pocket shape and the specified cutter diameter. An alarm occurs if the following is not satisfied.

Shorter side - (1mm + Finish allowance + Cutter radius) \times 2 > 5mm

(1) In the X-Y plane, the cutter is positioned at the start point.

Y: Y coordinate value of start point
If omitted, the Y coordinate value of the current point is regarded as that of the reference point.

Z: Z coordinate value of finish surface
In the G90 mode: Height from the zero point of the selected coordinate system to the finish surface level (bottom face of the pocket)
In the G91 mode: Distance from the point R level to the finish surface level (bottom face of the pocket)

I: Length of the pocket to be machined along the X-axis
Length referenced to the start point

J: Length of the pocket to be machined along the Y-axis
Length referenced to the start point

K: Finish allowance (valid in all directions, X, Y, and Z)
If omitted, “0” is regarded.

P: Cutting width expressed as a percentage (%) Ratio, in percentage terms, of the cutting width to the cutter diameter. Although the ratio is expressed as a percentage, the percent symbol (%) must not be specified.
If omitted, “P70” (70%) is assumed to apply.

Q: Depth of cut
If omitted, the depth of cut is determined so that the cycle axis reaches the level “finish surface level + finish allowance (K)” in a single cut.

R: Z coordinate value of the level to which positioning is performed in rapid feed or rapid return

D: Cutter radius compensation number

F: Cutting feedrate
This feedrate is used for the zigzag pattern machining and the final peripheral machining.

FA: Feedrate after point R level
After each cycle of zigzag pattern machining, the cutter returns to the point R level once and then moves to the point 1 mm away from the previously machined level. This feedrate is used for the cycle axis movement to this point from the point R level. If omitted, “FA = 4 \times F” is assumed to apply.

FB: Feedrate for Z-axis infeed
If omitted, “FB = F / 4” is assumed to apply.

Note that both FA and FB are only valid in the specified block.

Machining Sequence

Before starting the PMIL operation, the function checks if the programmed operation is possible based on the programmed pocket shape and the specified cutter diameter. An alarm occurs if the following is not satisfied.

Shorter side - (1mm + Finish allowance + Cutter radius) \times 2 > 5mm

(1) In the X-Y plane, the cutter is positioned at the start point.
Taking the start point specified in the program as the reference point, the system positions the cutter at the start point for PMIL which is determined at a point “finish allowance (K) + residual finish amount” inward of the pocket both in the X- and Y-axis directions. Note that the residual finish amount is taken into consideration to determine the start point so that residual portion can be removed. This amount is fixed at 1 mm (0.04 in.).

(2) The infeed axis Z is positioned to the point R level at a rapid feedrate.

(3) Starting at the point R level, the Z-axis is fed by the specified depth of cut, Q, at the feedrate specified by FB.

(4) The inside of the rectangle is cyclically machined in a zigzag pattern at the feedrate specified by F. Note that the cutting width is different from the specified value as indicated below:

\[
\text{Actual cutting width} = \frac{\text{Shorter side} - 2 \left(K + \text{Cutter radius compensation amount} + 1\text{mm} \right)}{n - 1}
\]

\[n = \left(\frac{\text{Shorter side} - 2 \left(K + \text{Cutter radius compensation amount} + 1\text{mm} \right)}{\text{Cutter radius compensation amount} \times 2 \times \frac{P}{100} + 1} \right) + 1\]

(5) The cutter returns to the initial positioning point (X, Y, R) at a rapid feedrate. It is then positioned from the point R level to a point 1 mm (0.04 in.) above the surface level machined in the previous machining cycle. Then, the cutter is infed by the amount "Q + 1 mm (0.04 in.)". The next machining cycle is performed in a zigzag pattern at a feedrate of F.
(6) Step (5). above is repeated until the final finish allowance remains on the finish surface. Finally, the cutter machines a rectangular pocket 1 mm (0.04 in.) wider than the machined pocket. In the final cycle, the feedrate specified by F is used.

(7) After completion of the cycle, the axes are positioned at a point 5 mm (0.20 in.) away from the workpiece in each axis direction.
6-2. Spiral Pattern Pocket Milling Function (PMILR)

[Function]
The spiral pattern pocket milling function uses the specified coordinate values as a reference point and cyclically machines the rectangular pocket range specified by the X- and Y-axis lengths (I and J) at a certain depth of cut (Q) until the final finish allowance (K) remains on the finish surface level (Z). In the pocket milling operation, a finish allowance (K) is also left on the side faces of the pocket in the X- and Y-axis directions.

• Operation
 a) The cutter is infed by the specified depth of cut, Q.
 b) The cutter moves inside the specified rectangular pocket range in a spiral pattern.
 c) Steps 1. and 2. above are repeated until only the finish allowance remains on the finish surface in the Z-direction.

[Programming format]
PMILR X__ Y__ Z__ I__ J__ K__ P__ Q__ R__ D__ F__ FA =__ FB =__

X: X coordinate value of start point
 If omitted, the X coordinate value of the current point is regarded as that of the start point.

Y: Y coordinate value of start point
 If omitted, the Y coordinate value of the current point is regarded as that of the reference point.

Z: Z coordinate value of finish surface
 In the G90 mode: Height from the zero point of the selected coordinate system to the finish surface level (bottom face of the pocket)
 In the G91 mode: Distance from the point R level to the finish surface level (bottom face of the pocket)

I: Length of the pocket to be machined along the X-axis
 Length referenced to the start point

J: Length of the pocket to be machined along the Y-axis
 Length referenced to the start point

K: Finish allowance (valid in all directions, X, Y, and Z)
 If omitted, “0” is regarded.
Machining Sequence

Before starting the PMILR operation, the function checks if the programmed operation is possible based on the programmed pocket shape and the specified cutter diameter. An alarm occurs if the following is not satisfied.

Shorter side - (Finish allowance + Cutter radius) \times 2 > 5mm

(1) In the X-Y plane, the cutter is positioned to the start point.

Taking the start point specified in the program as the reference point, the system determines a rectangle from the lengths specified by I and J. In this rectangle, the system defines another rectangle by leaving finish allowance K on four sides, then it determines the start point based on the cutting width. The cutter is positioned at that start point.

(If machined in an odd number of spiral cycles)
(If machined in an even number of spiral cycles)
(2) The infeed axis Z is positioned to the point R level at a rapid feedrate.

(3) Starting at the point R level, the Z-axis is fed by the specified depth of cut, Q, at the feedrate specified by FB.

(4) The inside of the rectangle is cyclically machined in a spiral pattern at the feedrate specified by F.

Note that the cutting width is different from the specified value as indicated below:

Actual cutting width = \(\frac{\text{Shorter side} - 2 \times (K + \text{Cutter radius compensation amount})}{n - 1} \)

\(n \): Number of cuts; obtained by rounding up the decimal fraction of the value calculated using the following formula.

\(n = \left(\frac{\text{Shorter side} - 2 \times (K + \text{Cutter radius compensation amount})}{\text{Cutter radius compensation amount} \times 2 \times \frac{P}{100} + 1} \right) \)

The diagonal cutting feedrate F toward the corner can be overridden by the override setting at OVERRIDE IN PMLR CORNER CUTTING of the NC optional parameter (AREA MACHINING).

(5) The cutter returns to the initial positioning point (X, Y, R) at a rapid feedrate. It is then positioned from the point R level to a point 1 mm (0.04 in.) above the surface level machined in the previous machining cycle. Then, the cutter is infed by the amount "Q + 1 mm (0.04 in.)". The next machining cycle is performed in a spiral pattern at a feedrate of F.

(6) Step (5) above is repeated until the final finish allowance remains on the finish surface.

(7) After completion of the cycle, the axes are positioned at a point 5 mm (0.20 in.) away from the workpiece in each axis direction.
7. Round Milling Functions (RMILO, RMILI)

[Function]
The round milling function uses the specified coordinate values as a reference point and cyclically machines the rectangle specified by the X- and Y-axis lengths (I and J), which has stock Q to be removed at the level finish allowance (K) above the finish surface level (Z).

There are two types of round milling functions as indicated below:

- RMILLO in which the external side of the defined rectangle is machined
- RMILI in which the internal side of the defined rectangle is machined

[Programming format]

```
RMILO  RMILI
X ± x  Y ± y  Z ± z  I ± dx  J ± dy  kfl  P%  Qdp  R ± rz  Dnn  F——  FA——
```

- **X**: X coordinate value (x) of reference point
 - If omitted, the X coordinate value of the current point is regarded as that of the reference point.
- **Y**: Y coordinate value (y) of reference point
 - If omitted, the Y coordinate value of the current point is regarded as that of the reference point.
- **Z**: Position of finish surface (z)
 - In the G90 mode: Height from the programming zero to the finish surface level
 - In the G91 mode: Distance from the point R level to the finish surface level
- **I**: Length of the rectangle to be cut along the X-axis (dx)
 - Length referenced to the reference point (x)
- **J**: Length of the rectangle to be cut along the Y-axis (dy)
 - Length referenced to the reference point (y)
- **K**: Finish allowance (fl)
 - If omitted, "fl = 0" is regarded.
- **P**: Cutting width expressed in percent (%)
 - Ratio, in percentage terms, of the cutting width to the cutter diameter. Although the ratio is expressed as a percentage, the percent symbol (%) must not be specified.
 - If omitted, "P70" (70%) is assumed to apply.
 - As will be explained later, the command value is slightly different from the actual cutting width.
- **Q**: Stock to be removed (dp)
 - If omitted, the cutter reaches the surface "finish surface position + finish allowance (K)" in a single cut.

Number of cuts: The number of cuts repeated to reach the level indicated above is calculated as indicated below.

\[
n = \text{Fup} \left(\frac{Q - K}{\text{Cutter radius compensation amount} \times 2 \times \frac{p}{100}} \right)
\]

- Fup indicates the processing to round up decimal fractions.

- **R**: Rapid retraction level (rz)
- **D**: Cutter radius compensation number (nn)
- **F**: Feedrate
 - Feedrate used for machining the external or internal circumference of the defined rectangle
- **FA**: Feedrate
 - Feedrate used when infeeding the Z-axis from the point R level to the finish surface (+ finish allowance K).
 - If omitted, "FA = 4 x F" is assumed to apply.

RMILO - External Cutting

- The first positioning point (A) is the point where the cutter periphery is 5 mm (0.20 in.) away in the longitudinal direction, and in the crosswise direction, the cutter is infed by the specified cutting width from the edge of the blank workpiece.
Before starting the RMILO operation, the function checks the relationship between the finish allowance and the stock to be removed. An alarm occurs if the following is not satisfied.

\[Q \geq K \]

RMILO X0 Y0 Z-50 I500 J300 K0.2 P70 Q40 R2 D01 F400 FA=800

How the RMILO operation is executed by the commands above is described below.

1. The reference point is taken as X0, Y0.
2. Machining is performed outside the rectangle defined by l500 and J300.
3. A cutter with a specified diameter of D01 is used.
4. Rapid feed positioning level is R (2 mm (0.078 in.)).
5. Machining allowance is Q (40 mm (1.57 in.)).
6. Cycle machining level is “finish level (Z)” + “finishing allowance (K)”.
 For this example: -50 mm + 0.2 mm.
7. Cutter is fed by the amount \[\left(\frac{Q - K}{n} \right) \] from the edge of the blank workpiece and cycle machining is performed at feedrate F.
8. Cycle machining is repeated until the specified finish allowance remains on the surface.

RMILI - Internal Cutting

- The first positioning point (A) is the point where the cutter periphery is 5 mm (0.20 in.) away from the edge of the blank workpiece.
- Before starting the RMILI operation, the function checks the relationship between the defined shape and the specified values. An alarm occurs if the following is not satisfied.
• (Cutter radius compensation amount + $Q + 5\text{mm}$) × 2 < Shorter side
 Alarm B 2315 Area machine: area command occurs unless this inequality is satisfied.

• $Q \geq K$
 Alarm B 2319 Area machining: large finish allowance occurs unless this inequality is satisfied.

Positioning in Round Milling Cycle

(1) First positioning
 Positioning is executed at the following position.
 • External cutting (RMIL0):

 Along the shorter side direction, the cutter engages the workpiece by the cutting width ($\text{cutter diameter} \times P$).
 Along the longer side direction, the cutter periphery is located 5 mm (0.20 in.) away from the workpiece edge.
- Internal cutting (RMIL):

Both in the X- and Y-axis directions, the cutter is positioned to a point where the cutter periphery is 5 mm (0.20 in.) away from the workpiece.

2) Positioning in the Z-axis direction

The cutter is fed from the point R level to the level of the finish surface level (Z) plus the finishing allowance (K) at a feedrate specified by FA. In the Z-axis direction, machining to the specified level (Z + K) is executed in one infeeding operation.

3) First infeed to milling surface

- External cutting (RMIL0):
 Since the cutter is positioned, in the first positioning, at a point where it is engaged with the workpiece by the specified cutting width, the round milling cycle can be started from the first positioning point.

- Internal cutting (RMIL):
The cutter is moved toward the reference point so that its periphery contacts the workpiece (5 mm (0.20 in.) both in the X- and Y-axis directions) from the first positioning point. The cutter is then infed by the cutting width along the shorter side direction. The round milling cycle then starts from that point.

(4) Second and succeeding infeds to milling surface

(5) Final infed

In the case of the RMILI function only, the final infed is executed in the manner shown below.

- Machining with more than one cut

- Machining with a single cut
Without Q (stock) command

(6) Retraction from workpiece
In the RMILI (internal cutting) mode, the cutter retracts inward from the workpiece as it is in con-
tact with the workpiece at the end of the cycle. The retraction amount is 5 mm (0.20 in.) along
both axes.
In the RMILO (external cutting) mode, the cutter does not retract.
SECTION 10 SUBPROGRAM FUNCTIONS

1. Overview

Programming sometimes uses similar patterns repeatedly or uses patterns already programmed for other operations. The subprogram function allows such patterns which are used repeatedly to be stored as subprograms so that they can be called when necessary. Therefore, the subprogram function not only simplifies programming, but also it allows quick and accurate programming.

1-1. Calling a Subprogram

- A subprogram can be called not only from the main program but also from another subprogram, and up to eight-subprogram nesting is possible.

- Three subprogram call modes are available as indicated below. Note that a subprogram call command must be specified independently. Accordingly, if a subprogram call command is specified with axis move commands in the same block, the subprogram call command is disregarded. For details, refer to the following sub sections.
 - a) Simple call (CALL)
 - b) Call after axis move (MODIN, MODOUT)
 - c) G/M code macros
 - Simple calls (G111 - G120, M201 - M210)
 - Call after axis move (G100 - G110)
 - Maker macro calls (for simple calls only)

- Subprograms to be called may be grouped into three types:

<table>
<thead>
<tr>
<th>Subprogram</th>
<th>File Device</th>
<th>File Extension</th>
<th>Usable Subprogram Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>User subprogram</td>
<td>MD1:</td>
<td>.SUB</td>
<td>O + + +</td>
</tr>
<tr>
<td>(System subprogram)</td>
<td>MD1:</td>
<td>.SSB</td>
<td>O + + +</td>
</tr>
<tr>
<td>Maker subprogram</td>
<td>System memory</td>
<td>.MSB</td>
<td>O O + + +</td>
</tr>
</tbody>
</table>

- When a subprogram call command is executed, the specified subprogram is searched for among the subprogram files displayed in response to the execution of the directory command key in the EDIT/AUX mode. How the specified subprogram is searched for differs depending on the type of subprogram; whether it is a user subprogram or a maker subprogram. However, if there is a subprogram immediately following a main program, then the search is made from that subprogram.
 - a) User subprograms
 - The specified subprogram is first searched for in the file where the program select command is specified. If the subprogram is not found in this file, it is searched for in all files whose device name is MD1: with extension .SSB.
 - b) Maker subprogram
 - The specified subprogram is searched for in all the files in the system memory: with an extension of MSB.

- If a subprogram file contains more than one subprogram of the same name, then only the one found first is valid.
Example 1:

Program select command is specified without a subprogram file name.

```
CALL O1

CALL O2
```

* If a program name differing from the program called is present, use a GOTO statement to skip over it.

```
CALL O1

CALL O1
```

* If the same program name is used more than once, only the first program name is valid.

Example 2:

If the located program has a program name in it.

```
CALL O1

CALL O2
```

* If a program name differing from the program called is present, use a GOTO statement to skip over it.

```
CALL O1

CALL O1
```

* If the same program name is used more than once, only the first program name is valid.
Example 3:

If the located program has RTS at more than one place

<table>
<thead>
<tr>
<th>CALL O1</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
</tr>
<tr>
<td>RTS</td>
</tr>
<tr>
<td>RTS</td>
</tr>
</tbody>
</table>

These program blocks are not loaded.

[Other]

- The allowable maximum number of subprograms that can be used or called for one program is 126.
- In the block which contains a subprogram call command, only a program name, “/” (block skip) and/or a sequence name, may be specified before the program call command. If other commands are written before it, an alarm will occur. Commands entered after the program name, specified following the program call command and up to the end of the block code in that block, are disregarded.

N10 X100 Y200 F300 CALL O1

These cause an alarm

N10 CALL O1 X100 Y200 F300

Disregarded

- In operation method A
 The allowable maximum tape length of the schedule, main, sub, and library programs is up to the maximum size of operation buffer area which is selected according to the specification.

- In operation method B
 The allowable maximum tape length of the schedule, main, sub, and library programs varies depending on the operation buffer area size which is selected according to the specification. When option S is specified for the PSELECT command, an alarm will occur if a subprogram call command (CALL; call after axis move; G code macro) is specified. However, a library-registered subprogram may be used even when option S is specified.

- A subprogram call command may or may not be executed in the MDI mode depending on the type of subprogram call command. An alarm occurs if a call after axis move command (MODIN, MODOUT, G100 to G110) is executed in the MDI mode. A simple call command may be executed if it is specified with the name of subprogram set by the program select command or with the library-registered subprogram name.
2. Simple Call (CALL)

[Function]
The simple call function executes the specified subprogram when the CALL command is specified.

[Programming format]

```
CALL O__ Q__ [Variable-setting] (variable=expression, variable=expression, ...)
```

- O : Program name to be called
- Q : Number of repetitions (Max. 9999)
 If Q is not specified, "1" is assumed to apply.

Variable-setting

- Set the data and variables to be passed to the called subprogram.
- In a variable-setting expression, enter a variable used in the called subprogram at the left side. The variable to be entered may be a local, common, system, or input/output variable.
- At the right side, enter the variable of the calling subprogram or data.

[Example program]

Example 1:

In the following case, the numerical values of LB, LC, and LD are:
LB = 10, LC = 10, LD = 20

```
O1
N1   LA = 10
N2   CALL O2   LA = 20   LB = LA
N3   LC = LA
M02
O2
N1   LD=LA  ___ : Local variable of O1
RTS  ___ : Local variable of O2
```

*: When the number of subprogram repetitions, specified by a Q word, is two or more, the present arguments are not reset and are executed as they are.
Example 2:

- **Main program:**

```plaintext
O1  
N1  G90  G00  X20  Y20  
N2  CALL  OSUB  Q3  LX=10  LI=25  LP=4  
 &  LY=15  LJ=25  LZ=50  
M02
```

- **Subprogram (Positioning):**

```plaintext
OSUB  
N11  LC = LP  
N12  CALL  OSQR  LX = LX  LY = LY  LZ = LZ  
N13  LC = LC - 1  
N14  IF  [LC LE 0]  N17  
N15  G91  G00  X = LI ...........  Positioning in the X-axis direction  
N16  GOTO  N12  
N17  G91  G00  Y = LJ ..........  Positioning in the Y-axis direction  
N18  LI = -LI .........................  Direction reversed on the X-axis  
RTS
```

- **Subprogram (Cutting):**

```plaintext
OSQR  
N21  G91  G01  Z = -LZ  
N22  X = LX  
N23  Y = LY  
N24  X = -LX  
N25  Y = -LY  
N26  G00  Z = LZ  
RTS
```

Programmers must record the following:
- Program name: OSUB
- Number of repetitions: No. of elements in the Y-axis direction
- Variables to be passed
 - LX: Cutting distance of a pattern (X-axis direction)
 - LY: Cutting distance of a pattern (Y-axis direction)
 - LZ: Depth of cut
 - LI: Distance to the next pattern (X-axis direction)
 - LJ: Distance to the next pattern (Y-axis direction)
 - LP: No. of elements in the X-axis direction

3. Subprogram Call after Axis Movement (MODIN, MODOUT)

[Function]
A call after axis move command establishes the call after axis move mode. In this mode, the specified subprogram is executed at each execution of an axis move command. When the call after axis move command is specified with an axis move command in the same block, the axis move command is disregarded although the call after axis move mode is established.

[Programming Format]

Call after axis move:

MODIN O__ Q__ [Variable-setting] (variable = expression, variable = expression, ...)

- O: Program name
- Q: Number of repetitions (Max. 9999)
 - If Q is not specified, “1” is assumed to apply.

Variable-setting:
- For details, refer to “Simple Call”. The variable setting is executed each time the specified subprogram is called after the execution of an axis move command. However, if the subprogram is repeatedly executed according to the setting for Q, the variables are not reset in the succeeding executions.
- Canceling the call after axis move mode: MODOUT
- The MODOUT command cancels the MODIN command specified last, but this does not apply to MODIN commands that have already been canceled.
- A MODOUT command must always be specified in the program containing the corresponding MODIN command.
- An alarm occurs in the following cases:

 ![Diagram](attachment:diagram.png)

[Details]
- Nesting subprogram call in the call after axis move mode
It is possible to call subprograms in as many as eight levels without canceling a call after axis move command. This is called “nesting”: how the call after axis move command is executed is explained below.

(1) When a MODIN command is specified in the subprogram which is called by the execution of another MODIN command specified in a main program, the subprograms are executed in the manner shown below.

(2) After the specification of a MODIN command, if another MODIN command is specified in the same program, or if another MODIN command is specified in a subprogram which is called by the execution of a subprogram call command other than the first MODIN command, the subprograms are executed in the manner shown below.

a) A MODIN command is followed by another in the same program.

b) After the specification of a MODIN command, another MODIN command is specified in the subprogram (O3) which is called by a subprogram call command other than the first MODIN command.

Subprogram O3 is called by a CALL command.
Subprogram O3 is called by other MODIN command.

In item 2) above, the relationship between O3 and O2 is the case explained in item 1) and that between O1 and O2 is the case explained in item 2).

Example:

Execution order of nested subprogram calls and the nesting level

<table>
<thead>
<tr>
<th>Mode</th>
<th>OA</th>
<th>OB</th>
<th>OC</th>
<th>OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nesting level</td>
<td>N100</td>
<td>N200</td>
<td>N100</td>
<td>N300</td>
</tr>
<tr>
<td>Execution order</td>
<td>N100</td>
<td>N301</td>
<td>N302</td>
<td>N303</td>
</tr>
</tbody>
</table>

- When setting variables to be specified following a MODIN command, if a local variable is used at the right side of the setting, the following point must be taken into consideration when the subprogram is called by axis move commands specified in a program other than the one that contains the corresponding MODIN command.
O2 is called by the execution of axis move commands in N3, then O1 is called by the execution of axis move commands in N10 of O2. Although variables are set at the time O1 is called, an alarm occurs since LS is not defined in O2.

Example:

\[\begin{align*}
N1 & \quad \text{MODIN} \quad O1 \quad \text{LB} = \text{LA} \quad \to \quad O2 \\
N2 & \quad \text{MODIN} \quad O2 \\
N3 & \quad \text{X____} \quad \rightarrow \quad N10 \quad \text{X____} \quad \rightarrow \quad \text{N11} : \quad \text{LA undefined error} \\
N4 &
\end{align*} \]

The N2 block must be specified as follows:

\[N2 \quad \text{MODIN} \quad O2 \quad \text{LA} = \text{LA} \]

The same applies to the CALL command.

\[\begin{align*}
N1 & \quad \text{MODIN} \quad O1 \quad \text{LB} = \text{LA} \quad \to \quad O3 \\
N2 & \quad \text{CALL} \quad O3 \quad \text{LB} = \text{LA} \quad \to \quad N20 \quad \text{X____} \quad \rightarrow \quad \text{:} \\
N4 & : \quad \rightarrow \quad N21 : \quad \text{RTS} \\
\end{align*} \]

- Difference between the Subprogram Call after Axis Move Function and Fixed Cycles
 a) When a drilling cycle is executed using the MODIN command, drilling is not carried out at points N2 and N3.

\[\begin{align*}
\text{MODIN} \quad \text{OFXC} \\
N1 & \quad \text{G90} \quad \text{G00} \quad \text{X20} \quad \text{Y10} \\
\text{MODIN} \quad \text{OCYC} \\
N2 & \quad \text{G90} \quad \text{G00} \quad \text{X40} \quad \text{Y20} \\
N3 & \quad \text{G90} \quad \text{G00} \quad \text{X60} \quad \text{Y40} \\
\text{MODOUT} \\
\text{MODOUT} \\
\end{align*} \]

b) When a drilling cycle is executed using the fixed cycle function, drilling is carried out at points N2 and N3.

\[\begin{align*}
\text{G81 \ldots} \\
N1 & \quad \text{G90} \quad \text{X20} \quad \text{Y10} \\
\text{MODIN} \quad \text{OCYC} \\
N2 & \quad \text{G90} \quad \text{X40} \quad \text{Y20} \\
N3 & \quad \text{G90} \quad \text{X60} \quad \text{Y40} \\
\text{MODOUT} \\
\text{G80} \\
\end{align*} \]
c) It is possible to skip drilling at the N2 and N3 blocks by specifying NCYL.
 In the example above, subprograms OCYC and OFXC are as indicated below:

```
OCYC
N10  G91  G00  X10
N11  X - 10 Y10
N12  X - 10 Y - 10
N13  X10  Y - 10
RTS

OFXC
G81  Z__ R__ F__
G80
RTS
```

- It is possible to program a fixed cycle within a subprogram called by the MODIN command.
 Example:

```
MODIN  OA
X__Y__
MODOUT

  : OA
  : G81
  : G80
  : RTS
```

If a fixed cycle is specified in a subprogram, the fixed cycle cancel G code (G80) must be specified in the same subprogram before the RTS command is specified.
4. **G and M Code Macro Functions**

G Code Macro Function

[Function]
A subprogram may be called using a G code instead of the CALL or MODIN/MODOUT command. The feature to call a subprogram using a G code is called the G code macro function. With a G code macro, since address characters are used for setting variables, it will help programmers familiar with conventional NC programming to use subprograms easily.

[Programming format]

\[
\text{G__ Variables-setting} (<\text{Address}> <\text{Expression}>, <\text{Address}> <\text{Expression}>, \ldots)
\]

- **G100** : Same as MODOUT; variable setting is not necessary.
- **G101 - G110** : Same as MODIN O__
- **G111 - G120** : Same as CALL O__
 - Only subprograms in the user subprogram file may be called.
- **G300** : Same as MODOUT; variable setting is not necessary.
- **G301 - G349** : Same as MODIN O__
- **G350 - G399** : Same as CALL O__
 - Only subprograms in the make subprogram file may be called.
- **Variable-settings**:
 - \(<\text{Address}> <\text{Expression}>, <\text{Address}> <\text{Expression}>, \ldots\)
 - Here address characters excluding G, M, N and O and extended address characters may be used.
 - The command value is checked when a variable is actually specified.
 - For referencing/updating a variable, a local variable name (address character is preceded by "P") is used.
 - If a command is not specified, referencing that command does not cause an undefined error, but the command is handled as “EMPTY (undefined)”.

M Code Macro Function

[Function]
A subprogram may be called using an M code instead of a CALL command. This feature is called the M code macro function. The M code macro function does not set variables. The function must be specified in a block without other commands.

[Programming format]

\[
\text{M__}
\]

- **M201 - M210** : Same as CALL O__
 - Only subprograms in the user subprogram file may be called.
- **Program names**
 - Correspond to M201 - M210 are set using parameters. Note that program names OO000 - OO999 cannot be used.
Common Items

- An alarm will occur if the parameter setting does not include the program name that corresponds to the specified G or M code macro, or if that name is not defined by the system. An alarm will also occur if that program is not included in the subprogram file. In this case, the alarm occurs at the time the program select command is executed. However, if the specified program is not selected by the program select command, because, for example, the program name is altered by the parameter setting after the execution of the program select command, then the alarm occurs when the G or M code macro command is executed.

- For “G” and “M” used as the G or M code macro command, values cannot be passed using a variable.

- For “G” and “M”, only numerical values are loaded when the program select command is executed and other data, if specified, will result in an alarm.

Example:

G = 111
G = VC1
G112

These are not loaded and an alarm occurs
(G code error) when they are executed.

A program named G112 is loaded.

[Example program]
Line at angle
[Programming format]

G111 X__ Y__ I__ J__ K__
X, Y : Reference point (Absolute)
I : Interval
J : Angle
K : Number of points

This example may be expressed by the following subprogram, which assumes that OLAA is set for G111 by parameter setting.

OLAA
N1 LEN = 0
N2 PK = PK - I
N3 IF [PK LT 0] N7
N4 LEN = LEN + PI
N5 G90 G00 X = LEN + COS [PJ] + PX
& Y = LEN + SIN [PJ] + PY
N6 GOTO N2
N7 RTS
The command “G111X30Y20I10J30K5” gives the result shown below:

```
G111 X30 Y20 I10 J30 K5
```
5. Program Call Function Using Variables

5-1. Outline

This function consists of the following two functions. Items which are not described here are the same as those described in the conventional sub-program function. Therefore, read this manual in conjunction with the "Sub-program Function" in the Programming Manual.

- Program call function by variables
 This function makes it possible to call a program by designation of an expression as well as a program number. This function, however, cannot be fully used in S operation method, remote buffer operation, or DNC-DT operation.

- Program registration function
 The programs to be used in the main program are previously written in the part program, and are registered upon selection of the program. This function cannot be used in the S operation method, remote buffer operation, or DNC-DT operation.

5-2. Program Call function by Variables

This function allows you to call a program by designating a program number using an expression.

5-2-1. Application Range

There are five program call commands, as given below:

(a) CALL
(b) MOD IN
(c) G code macros (G101 to G120/G300 to G399)
(d) M code macros (M201 to M210)
(e) Maker macro call (PCIR, TAPR, etc.)

This function becomes effective by designation of the following two commands:

(a) CALL
(b) MOD IN

In this manual, the description of "program call" refers only to the program call by the above two commands. This function becomes effective with all the operation methods. In the S operation, remote buffer operation, or DNC-DT operation, however, programs to be called must be previously registered in the library, and "PN" command has no meaning as a program number. This function also becomes effective even in the library program.
5-2-2. Program Command Format

CALLo= [Expression] Q___ [Argument setting] (PN = ____)
MODINo= [Expression] Q___ [Argument setting] (PN = ____)

The designation must be made in this order, excluding "PN".
"PN" may be designated in or before the argument setting.

o: Name (number) of program to be called
- "o" may be added and be handled like an "expression".
 An "expression" is formed with "o" followed by "=" (a space is allowed between "o" and "="). An
 "expression" is regarded as such even if a value is designated after "=" (Example: o = 100).
- In an expression, a program name cannot be designated. Only a program number is allowed.
- In an expression, a program number is rounded to the nearest integer (with fractions after decimal point rounded off) and is handled as a 4-digit number. "0" is deemed to be 0000. The range must be between 0000 and 9999.
- In an expression, a sub-program is not automatically registered upon selection of a program. Therefore, designate the number of a program to be used with "PN" command or the "PREG" command (described later), or previously register the program number the library. In this case, note that the "PN" command can only be used with the operation method A or B.
- In [Expression], no space should be used.
- A space is allowed between "o" and "=" or "=" and [number].

Q: Number of repetitions (within 9999 times)

When Q command is omitted, the frequency Q1 is automatically set.

Argument: variable = expression, variable = expression,

Data or variables to be transferred between programs are set. These settings may be omitted.

PN: Program number to be used
- The "PN" command may be omitted.
 A space is allowed between "PN" and "=" or "=" and [number].
- The "PN" command is used to designate the program number to be used, and not used for the operation.
- In the called program, a value called by "PN" can be referred to.
- The PN command in the CALL or MODIN command block is automatically registered upon selection of the program for the operation method A or B. (This is also carried out even when a program name is not designated by an "expression").
 Aside from the PN command, there is a later-mentioned method for program registration.
- Only values (integers without sign) can be designated for "PN" command. Variables or arithmetic expressions cannot be used. An error will occur when a command value is beyond the range between 0 and 9999.
- The "PN" command is handled as a 4-digit number. If PN = 1, register 0001.
- "PN" is a local variable. "PN" can be used in the called program.
- If "PN" has already been used for another purpose, set "1" at the NC optional parameter (bit) No. 69, bit 4.
 This "PN"-related function can be made invalid.
- This function only becomes effective with operation method A or B.
5-3. Program Registration Function

Subprograms to be used in the main program are previously written in the part program, and these subprograms are registered upon selection of the main program.

5-3-1. Application Range

This function only becomes effective with the operation method A or B. It becomes effective in the library program, too.

When an operation method other than A or B is selected, this function does not work and its commands are ignored.

5-3-2. Program Command Format

PREG o___, o___,

Comma "," can be substituted by space or "/". A program name and others (except the string starting with 0 or :) are registered. No error or alarm occurs even if no program name is designated after PREG.

- A program name is handled as a character string. Therefore o1 and o0001 are different programs.
- Both the program number and program name can be designated.
- An expression cannot be used for a program number.
- PREG must be at the head of a block (sequence name may be omitted).
- G0, X or Y are not executed even if one is designated in the PREG command block.
- A program, called by the program designated by PREG, is also registered.
SECTION 11 USER TASK

1. User Task 1

User task 1 was developed to allow users to use the high speed processing function by themselves. User task 1 consists of the following three functions:

- Branch function
- Variable function
- Math function

1-1. Branch Function

- The branch function controls the execution order of the sequences within programs. It has a GOTO statement, which causes an unconditional jump, and an IF statement for a conditional jump.
- An alarm will occur if the destination of a jump does not belong to the program where a branch command is specified. When there is more than one sequence name as the destination of a jump, the jump takes place to the sequence name closer to the beginning of the program.
- In operation method A, a branch command searches for the destination of the jump from the beginning of a program. Accordingly, the closer the destination is to the end of the program, the longer the time it will take to execute a branch command. In contrast, the location of the destination has no influence on the branch command execution time when operation method B is used.
- A block which includes a branch command cannot accommodate anything other than the program name, “/” (block skip) and sequence name.

```
N10  X100  Y200  F300  GOTO  N20
```

- The commands programmed after the destination of the jump up to the end of the block code in that block are all disregarded.

```
N10  GOTO  N20  X100  Y200  F300
```

- An alarm occurs if a branch command is executed in the MDI mode.
- If operation method A is selected by the parameter setting, branching can be done quickly by designating sequence labels as the destination of a branch command. However, this quick branching is possible only up to 30 sequence labels from the beginning of a program. For sequence labels after these 30 sequence labels, the destination of a branch command is searched for from the beginning of a program, as is done conventionally.
Example:

O1000
NA01 1st sequence label
\[\downarrow \]
GOTO NA02 Quick branching
\[\downarrow \]
NA02 2nd sequence label
GOTO NA51 Conventional branching
\[\downarrow \]
NA30 30th sequence label
\[\downarrow \]
NA51 51st sequence label
\[\downarrow \]
M02

[]: Sequence label: A sequence name which contains alphabetic characters.

- If operation method B is selected by parameter setting, the restrictions indicated below apply to the main program.
 a) When the S option is specified in the program selection command, the execution of a branch command results in an alarm.
 b) The sequence name of the destination of a jump must be a label, which is an alphanumeric string. A sequence number, which is a numeric string, will result in an “undefined” error.
 c) Up to 30 sequence labels may be used, including ones not specified as the destination of a jump. If the number of sequence labels used exceeds this limit, an alarm in program selection occurs. It is recommended to use sequence labels only for blocks which will be the destination of a jump.

1) GOTO Statement
 [Function]
 This is a branch function which causes a jump unconditionally.
 [Programming format]

 \[\text{GOTO } N___ \]

 N: Specify a sequence name or a sequence label of jump destination.
 A GOTO statement and a sequence name (sequence label) must be delimited by a space.

2) IF Statement
 [Function]
 This is a branch function which causes a conditional jump. If the condition is satisfied, the execution sequence jumps to the specified destination. If the condition is not satisfied, the execution sequence moves to the next sequence.
 [Programming format]

 \[\text{IF } \text{qualification} \text{ N___} \]
 \[\text{IF } \text{qualification} \text{ GOTO } N___ \]
There are six types of qualifications available as indicated below.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
<th>Example of IF Statement</th>
<th>Contents</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
<td>Less Than, <</td>
<td>IF [VC1 LT 5] N100</td>
<td>Jump to N100 when VC1 is less than 5.</td>
<td></td>
</tr>
<tr>
<td>LE</td>
<td>Less than or Equal to, ≤</td>
<td>IF [VC1 LE 5] N100</td>
<td>Jump to N100 when VC1 is less than or equal to 5.</td>
<td>Provide a space on either side of the operator.</td>
</tr>
<tr>
<td>EQ</td>
<td>Equal to, =</td>
<td>IF [VC1 EQ 5] N100</td>
<td>Jump to N100 when VC1 is equal to 5.</td>
<td></td>
</tr>
<tr>
<td>NE</td>
<td>Not Equal to, ≠</td>
<td>IF [VC1 NE 5] N100</td>
<td>Jump to N100 when VC1 is not equal to 5.</td>
<td></td>
</tr>
<tr>
<td>GT</td>
<td>Greater Than, ></td>
<td>IF [VC1 GT 5] N100</td>
<td>Jump to N100 when VC1 is greater than 5.</td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>Greater than or Equal to, ≥</td>
<td>IF [VC1 GE 5] N100</td>
<td>Jump to N100 when VC1 is greater than or equal to 5.</td>
<td></td>
</tr>
</tbody>
</table>
1-2. Variable Function

[Function]
The variable function allows the use of variables in the data section of an expression such as \(X = \text{VC1} \) instead of directly specifying a numerical value such as \(X = 100 \). This gives programs more flexibility and versatility, since assigning numeric values to variables permits the same program to be used for machining similar types of workpieces.

Example:
Using the following program will facilitate machining the geometry shown below.

Before starting the operation, set the variables using parameters as follows:

\[
\begin{align*}
\text{VC1} & = 60 \text{ Radius of the first circle to be machined} \\
\text{VC2} & = -5 \text{ Incremental radius reducing value (Pitch of the radius)} \\
\text{VC3} & = 10 \text{ Number of circles to be machined}
\end{align*}
\]

[Details]

- Variables may be assigned to addresses (with an exception of O and N) and extended addresses. An equal symbol “\(= \)”, blank or HT should be used as a delimiter to be placed between an address and a variable.

 When assigning a variable to a G code or an extended address, always use the equal symbol “\(= \).”

 Example: \(G = \text{VC1} \) (If \(\text{VC1} = 1 \), “\(G = \text{VC1} \)” is interpreted as \(G1 \).)

- If a value outside the allowable limits of an individual address is assigned, an alarm occurs. For addresses that require the use of an integer, a decimal fraction is rounded off if a real number is used.

- EMPTY

 The value of an undefined variable is represented by “EMPTY”. Particularly, the local variables beginning with “P” are assigned “EMPTY” if a default is set. Other local variables not beginning with “P” are not assigned initial values unless they are defined.

 How “EMPTY” is interpreted:

 a. When a variable is assigned to an address

 Assigning an undefined variable is equivalent to omitting the address. The use of an undefined variable in the right member causes an alarm.
b. When an undefined variable is used in the operational expression
“EMPTY” is interpreted as 0, except when no operational symbols are used.

<table>
<thead>
<tr>
<th>VC1 = EMPTY</th>
<th>VC1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC2 = VC1</td>
<td>VC2 = VC1</td>
</tr>
<tr>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>VC2 = EMPTY</td>
<td>VC2 = 0</td>
</tr>
<tr>
<td>VC2 = +VC1</td>
<td>VC2 = +VC1</td>
</tr>
<tr>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>VC2 = 0</td>
<td>VC2 = 0</td>
</tr>
<tr>
<td>VC2 = VC1 + VC1</td>
<td>VC2 = VC1</td>
</tr>
<tr>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>VC2 = 0</td>
<td>VC2 = 0</td>
</tr>
</tbody>
</table>

c. When an undefined variable is used in the qualification
“EMPTY” is different from 0 only when EQ or NE is used.

<table>
<thead>
<tr>
<th>VC1 = EMPTY</th>
<th>VC1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 IF [VC1 EQ EMPTY] N10</td>
<td></td>
</tr>
<tr>
<td>N2 ↓ Branching to N10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VC1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 IF [VC1 EQ EMPTY] N10</td>
</tr>
<tr>
<td>N2 ↓ Branching to N10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VC1 = EMPTY</th>
<th>VC1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 IF [VC1 NE 0] N10</td>
<td></td>
</tr>
<tr>
<td>N2 ↓ Branching to N10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VC1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 IF [VC1 NE 0] N10</td>
</tr>
<tr>
<td>N2 ↓ Branching to N10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VC1 = EMPTY</th>
<th>VC1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 IF [VC1 GE EMPTY] N10</td>
<td></td>
</tr>
<tr>
<td>N2 ↓ Branching to N10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VC1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 IF [VC1 GE EMPTY] N10</td>
</tr>
<tr>
<td>N2 ↓ Branching to N10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VC1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 IF [VC1 GE 0] N10</td>
</tr>
<tr>
<td>N2 ↓ Branching to N10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VC1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 IF [VC1 GE 0] N10</td>
</tr>
<tr>
<td>N2 ↓ Branching to N10</td>
</tr>
</tbody>
</table>

• Array Variables
An array is a set of data having the same elements. The array name should be immediately followed by a subscript enclosed by [] to represent a specific element.
Variables that permit the use of an array

• An array may not be used for local variables.
 a) Common variables VC[n]
 b) Some system variables Example: VZOFX [n], etc. (user task 2)
 c) I/O variables VDIN[n] or VDOUT[n] (user task 2)

 "*: “n” is a subscript
Assume that an arithmetic expression is used. The subscript used in the arithmetic expression is called a subscript expression. If an array variable is used in the subscript expression, an alarm occurs.
1-2-1. Common Variables

Variables which are used in common for schedule programs, main programs and subprograms are referred to as common variables, and they may be referenced or updated in any of these programs.

[Programming format]

Type 1: \[V \ C] \text{Numeric} \\
- Numeric: 1 to 200 (standard)
- 1 to 1000 (optional)

Type 2: \[V \ C \ [\text{Expression} \] \]
- Result of the expression: 1 to 200 (standard)
- 1 to 1000 (optional)

[Details]

- In the standard specification there are 200 common variables from VC1 to VC200; optionally, this number of common variables can be expanded to 1000, from VC1 to VC1000. VC001 and VC01 are interpreted as VC1.

- Common variables can be set using parameters. Settings of the variables in the range VC1 to VC200 in the standard specification, and those in the range VC1 to VC400 in the optional specification, are not affected by conditions such as power ON/OFF, NC reset, etc.

- The variables in the range VC401 to VC1000 in the optional specification are cleared to “EMPTY” when the power is turned on.

- With type 1, specify the common variable number directly. With type 2, specify the common variable number by expressions according to the array format.

 Example of type 2 designation:
 - VC[1] Interpreted as VC1
 - VC[VC1 + 1] Interpreted as VC11, where VC1 = 10

- If the result of the expression is outside the range 1 to 200 with the standard specification, or 1 to 1000 with the optional specification, an alarm occurs.
1-2-2. Local Variables

Local variables may be used in a main program or a subprogram. They are valid only for a particular program and may be set, referenced, or updated only in this particular program. Therefore, it is not permissible to reference or update a local variable set in a certain program from other programs. When the variable is set by an argument calling a subprogram, the left part local variable, which is a variable of a called subprogram, may be set by the calling subprogram and referenced or updated by the called subprogram. This variable can be used to pass arguments.

![Diagram of Schedule program, Main program, Subprogram A, Subprogram B, Local variable in main program, Argument, Local variable in subprogram A, Argument, Local variable in subprogram B]

[Format]

Type 1:
- Alphabet
- Alphabet
- Alphanumeric (1 or 2 characters)
 - Alphabet other than O, N, V and P

Type 2:
- P
- Alphabet
- Alphanumeric (1 or 2 characters)

[Details]

- A local variable may be set by defining less than 5 characters except for reserved words to the left of the ‘=’ symbol. The local variables for the subroutine are erased after the subprogram has been executed as many times as specified. A total of 255 local variables may be set, including types 1 and 2. All of the local variables are erased by power ON/OFF, NC reset, etc.
- Local variables are set or updated in the same manner regardless of the local variable type, type 1 or type 2. When referenced (defined at the right part of ‘=’), however, the processing differs between these two types of local variables if the local variable to be referenced has not been set. Although an alarm occurs with type 1 local variables, a local variable is set with “EMPTY” defined as a value when type 2 local variable is used.
- Addresses specified to assign arguments of G code macro instructions are set using a variable name with “P” at its start and are regarded as a local variable for type 2.

Example:
Specifying “G111 X100 Y200 P5;”
Set local variables as PX = 100, PY = 200, and PP = 5. If special processing is required for the omitted address, program the required processing in the subprogram that is called by a G code macro.

```
N1   IF     [PI  NE  EMPTY] N2
   Special processing to be executed if address I is omitted
N2   IF     [PJ  NE  EMPTY] N3
   Special processing to be executed if address J is omitted
N3 .......... Subprogram called by a G code macro
```

1-3. Math Functions

For specifying numerical values for variables and address characters (X, Y, Z, I, K, ...), arithmetic expressions can be directly specified if algebraic calculations are required for obtaining the numerical values to be specified.

[Programming format]
Address character or variable = Expression

Expression

<table>
<thead>
<tr>
<th>Operator</th>
<th>Math Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Positive sign</td>
<td>+1234</td>
</tr>
<tr>
<td>–</td>
<td>Negative sign</td>
<td>–1234</td>
</tr>
<tr>
<td>+</td>
<td>Addition</td>
<td>X = 12.3+VC1</td>
</tr>
<tr>
<td>–</td>
<td>Subtraction</td>
<td>X = 12.3–VC1</td>
</tr>
<tr>
<td>*</td>
<td>Multiplication</td>
<td>X = VC1*10</td>
</tr>
<tr>
<td>/</td>
<td>Division</td>
<td>X = VC1/10</td>
</tr>
</tbody>
</table>

Example:
Conventional programming X135
Programming using math function X = 100 + XP2 XP2 = 35
1-4. System Variables

Variables which are determined by the system are referred to as system variables, and they may be referenced or updated in schedule programs, main programs and subprograms. A system variable is referenced or updated after the execution of the sequence that immediately precedes the referencing or updating sequence.

[Programming format]

Type 1:

| V | Alphabet | Alphanumeric (Within 6 characters) |

Type 2:

| V | Alphabet | Alphanumeric (Within 6 characters) | [| Expression |] |

The second alphabetic character, that follows V, must not be "C".

[Details]

- The type of each system variable is determined and if the type used for specifying a specific parameter differs from the predetermined type, an alarm occurs.
- Some system variables may be set in the zero set, tool data and/or parameter mode.
- The system variables are classified into the following three types:
 a) Read and write system variables
 b) Read and write system variables requiring care in writing
 c) Read only system variables

Details of these system variables are described below.
1-4-1. Read/Write System Variables

(1) Zero Offset
VZOF*: [expression]
*: Axis name X - Z, U - W, A - C
Expression: Work coordinate system number
Allowable range: 1 to number of work coordinate system sets
The zero offset values for the work coordinate system indicated by the expression can be read and written. For this operation, the unit system is as set by NC optional parameter (INPUT UNIT SYSTEM). The axis is determined by the designated axis name.

- Example 1:
 Writing X-axis zero offset value at No. 10
 VZOFX[10] = 20
 - µm unit system
 Zero offset value at No. 10 = 20 µm
 - mm unit system
 Zero offset value at No. 10 = 20 mm

- Example 2:
 Reading X-axis zero offset value at No. 10
 VCI = VZOFX[10] (Zero offset value at No. 10 is 20 mm)
 - µm unit system
 VC1 = 20000
 - mm unit system
 VC1 = 20
 For details, refer to “General Rule for Conversion between Inches and Millimeters”. (Note: “inch system” refers to the English measurement system.)

(2) Tool Length Offset Value
VTOFH[expression]
Expression: Tool length offset number
Allowable range: 1 to number of tool data sets
The tool length offset values for the tool length offset number indicated by the expression can be read and written. For this operation, the unit system is as set by NC optional parameter (INPUT UNIT SYSTEM).

- Example 1:
 Writing tool length offset value at No. 10
 VTOFH[10] = 20
 - µm unit system
 Tool length offset value at No. 10 = 20 µm
 - mm unit system
 Tool length offset value at No. 10 = 20 mm

- Example 2:
 Reading tool length offset value at No. 10
 VC1 = VTOFH[10] (Tool length offset value at No. 10 is 20 mm)
 - µm unit system
 VC1 = 20000
 - mm unit system
 VC1 = 20
 For details, refer to “General Rule for Conversion between Inches and Millimeters”. (Note: “inch system” refers to the English measurement system.)
(3) Cutter Radius Compensation Values

VTOFD[expression]

Expression: Cutter radius compensation number
Allowable range: 1 to number of tool data sets

The cutter radius compensation values for the cutter radius compensation number indicated by the expression can be read and written. For this operation, the unit system is as set by NC optional parameter (INPUT UNIT SYSTEM).

- Example 1:
 Writing cutter radius compensation value at No. 10
 VTOFD[10] = 20
 - µm unit system
 Cutter radius compensation value at No. 10 = 20 µm
 - mm unit system
 Cutter radius compensation value at No. 10 = 20 mm

- Example 2:
 Reading cutter radius compensation value at No. 10
 VC1 = VTOFD[10] (Cutter radius compensation value at No. 10 is 20 mm)
 - µm unit system
 VC1 = 20000
 - mm unit system
 VC1 = 20

For details, refer to “General Rule for Conversion between Inches and Millimeters”.

(Note: “inch system” refers to the English measurement system.)

(4) Positive Programmable Travel Limit

VPPL*

*: Axis name X to Z, U to W, A to C

The programmable travel limit in the positive direction for the axis indicated by the axis name can be read and written. This sets the data for user parameter “P PROG LIMIT WRK” that is accessible in the parameter setting mode. For this operation, the unit system is as set by NC optional parameter (INPUT UNIT SYSTEM). The value to be set is determined in the work coordinate system currently selected.

NOTICE

It is not permissible to set the positive programmable travel limit beyond the position set as the travel end limit in the positive direction

- Example 1:
 Writing programmable travel end limit (+) of the X-axis
 VPPLX = 500
 - µm unit system
 Programmable travel end limit (+) = 500 µm
 - mm unit system
 Programmable travel end limit (+) = 500 mm

- Example 2:
 Reading programmable travel end limit (+) of X-axis
 VC1 = VPPLX (Programmable travel end limit (+) is 500 mm)
 - µm unit system
 VC1 = 500000
 - mm unit system
VC1 = 500
For details, refer to “General Rule for Conversion between Inches and Millimeters”.
(Note: “inch system” refers to the English measurement system.)

NOTICE

Although the programmable travel end limit (+) is set in the work coordinate system, the travel end limit (+) is set in the machine coordinate system.

(5) Negative Programmable Travel Limit

VNPL*

*: Axis name X to Z, U to W, A to C

The programmable travel limit in the negative direction for the axis indicated by the axis name can be read and written. This sets the data for user parameter “N PROG LIMIT WRK” that is accessible in the parameter setting mode. For this operation, the unit system is as set by NC optional parameter (INPUT UNIT SYSTEM). The value to be set is determined in the work coordinate system currently selected.

NOTICE

It is not permissible to set the negative programmable travel limit beyond the position set as the travel end limit in the negative direction.

- Example 1:
 Writing programmable travel end limit (–) of the X-axis
 VNPLX = 500
 - µm unit system
 Programmable travel end limit (–) = 500 µm
 - mm unit system
 Programmable travel end limit (–) = 500 mm

- Example 2:
 Reading programmable travel end limit (–) of X-axis
 VC1 = VNPLX
 If programmable travel end limit (–) is 500 mm,
 - µm unit system
 VC1 = 500000
 - mm unit system
 VC1 = 500
 For details, refer to “General Rule for Conversion between Inches and Millimeters”.
 (Note: “inch system” refers to the English measurement system.)

NOTICE

Although the programmable travel end limit (–) is set in the work coordinate system, the travel end limit (–) is set in the machine coordinate system.
(6) Printer Control

VPCNT

Setting range: Binary, 8 bits (1 byte); 0 – 255
This is used with a print statement.
To change a page, for example, set the “change page” code and output it to the printer along with the print statement.
If this system variable is printed using the print statement, the value set for VPCNT is output. Nothing is output when RS232C is not selected by the printer control variable VPRT.
When optional parameter (bit) No. 8, bit 0 (8-bit JIS) is OFF, data of 0 to 127 ($00 - $7F) is output with a parity bit (bit 7).
When the “PRINT VPCNT” command is executed, the line feed command is output after the output of the printer control code. Therefore, to output only the printer control code, execute the “SPRINT VPCNT” command.
• Example:
 To output only “code 31 (1F in hexadecimal)” to the printer without line feed, enter as indicated below.
 VPCNT=31
 SPRINT VPCNT

(7) Automation Specification Judgment Result 1

VOK1

Setting range: Binary, 8 bits (1 byte); 0 - 6, 10 - 16
This is used with a print statement.
It is convenient to use this system variable to print the result of gauging.
The relationship between the setting value for VOK1 and the print output is indicated below. In any case, the output comprises three characters.

PRINT VOK1

Set value	Print Contents & Display
VOK1=0 or 10 | [] (three spaces)
=1 or 11 | [OK]
=2 or 12 | [+OK]
=3 or 13 | [+NG]
=4 or 14 | [-NG]
=5 or 15 | [NG]
=6 or 16 | [] (three spaces)
=EMPTY | [] (three spaces)

With the setting of “10” to “16”, the output is in enlarged characters.
On the display screen, the result is displayed in characters of the same size whether the setting is 0 – 6 or 10 – 16.
When the setting calls for output in enlarged characters, the following is output.
Epson specification | $0E
Okuma PP-5000 specification | $1F
In other specifications | No special results
(8) Automation Specification Judgment Result 2
VOK2
Setting range: Binary, 8 bits (1 byte); 0 – 255
This is used with a print statement.
It is convenient to use this system variable to print the total result of gauging.
The relationship between the setting value for VOK2 and the print output is indicated below. In any case, the output consists of eight characters.

<table>
<thead>
<tr>
<th>Set value</th>
<th>Print Contents & Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOK2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>[TOTAL OK]</td>
</tr>
<tr>
<td>2</td>
<td>[TOTAL NG]</td>
</tr>
</tbody>
</table>

NOTICE
The setting range is 0 – 255 if the setting is made only for VOK2. For use in combination with the PRINT statement, the setting must be “1” or “2”; setting another value causes an alarm.

(9) Gauging Number
VNUM
Setting range: 0 – 9999
This is used with a print statement.
It is convenient to use this system variable to print the gauging point number.
The relationship between the setting value for VNUM and the print output is indicated below. In any case, the output consists of seven characters.

<table>
<thead>
<tr>
<th>Set value</th>
<th>Print Contents & Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNUM</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>[NO. 0]</td>
</tr>
<tr>
<td>1</td>
<td>[NO. 1]</td>
</tr>
<tr>
<td>10</td>
<td>[NO. 10]</td>
</tr>
<tr>
<td>100</td>
<td>[NO. 100]</td>
</tr>
<tr>
<td>1000</td>
<td>[NO. 1000]</td>
</tr>
<tr>
<td>EMPTY</td>
<td>[NO. 0]</td>
</tr>
</tbody>
</table>

(10) Printer Control
VINTG
Setting range: 0 – ±999999.999
This is used with a print statement.
The data output in response to the print statement are all treated as a floating point variable; in the mm unit system, the data is displayed up to the third place right of the decimal point and in the inch unit system, the data is displayed up to the fourth place right of the decimal point. This system variable can be used conveniently to display the data in integer form.
The relationship between the setting value for VINTG and the print output is indicated below. In any case, the output consists of twelve characters.

```
<table>
<thead>
<tr>
<th>VINTG</th>
<th>Print Contents &amp; Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>-99999999</td>
<td>[- 99999999]</td>
</tr>
<tr>
<td>0</td>
<td>[0]</td>
</tr>
<tr>
<td>99999999</td>
<td>[99999999]</td>
</tr>
</tbody>
</table>

When PRINT XX is executed, the displayed data will be [0.000] in mm unit system.
```

(11) Printer Control

VPRT

Setting range: Binary, 8 bits (1 byte); 0 – 255

Specify the output destination and output unit for outputting the character string set with the print statement.

```
<table>
<thead>
<tr>
<th>Output Destination</th>
<th>Unit of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>No output</td>
<td>VPRT = 0</td>
</tr>
<tr>
<td>RS232C only</td>
<td>VPRT = 1</td>
</tr>
<tr>
<td>Display screen only</td>
<td>VPRT = 2</td>
</tr>
<tr>
<td>RS232C and display screen</td>
<td>VPRT = 3</td>
</tr>
</tbody>
</table>
```

The display screen indicates the personal screen in the operation mode.
Output to the RS232C is valid only when the setting for NC optional parameter (bit) No. 2, bit 4 is ON.
The setting is cleared to “0” when the power is turned ON. However, the set state is not influenced by the resetting operation.

Concerning the “minimum unit system” and the “standard unit system” for output, the system selection is valid only for floating point variables, and the same data is output in different formats according to the selected unit system. The number of characters is “12” in either case.

Some data which can be displayed with the minimum unit system selection cannot be displayed in the standard unit system since the number of digits exceeds eight. In this case “+OVERFLOW” or “–OVERFLOW” is displayed.

- Example:

```
VC1 = 12.34
PRINT VC1
```

```
<table>
<thead>
<tr>
<th>VPRT</th>
<th>Set value</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>“mm” unit system</td>
<td>[0.012]</td>
</tr>
<tr>
<td></td>
<td>“inch” unit system</td>
<td>[0.0012]</td>
</tr>
<tr>
<td>4 - 7</td>
<td>“mm” unit system</td>
<td>[12.340]</td>
</tr>
<tr>
<td></td>
<td>“inch” unit system</td>
<td>[12.3400]</td>
</tr>
</tbody>
</table>
```
(12) Tool Length/Breakage Switching Flag
VFST
Setting range: Binary, 8 bits (1 byte); 0 – 255
The basic operation mode for automatic tool length offset and automatic tool breakage detection can be designated.
The relationship between each bit and the operation modes is indicated in the table below.

<table>
<thead>
<tr>
<th>Bit No.</th>
<th>Operation Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 7</td>
<td>1: The tool length referenced to the spindle nose is used as the tool length offset value. 0: The length of individual tools relative to the standard tool used for setting the work coordinate system is used as the tool length offset value.</td>
</tr>
<tr>
<td>Bit 6</td>
<td>To be “0”.</td>
</tr>
<tr>
<td>Bit 5</td>
<td>To be “0”.</td>
</tr>
<tr>
<td>Bit 4</td>
<td>To be “0”.</td>
</tr>
<tr>
<td>Bit 3</td>
<td>1: The X-axis does not move in positioning to the touch sensor position. Set “1” when the touch sensor position is set independently of the X-axis.</td>
</tr>
<tr>
<td>Bit 2</td>
<td>1: Automatic tool length offset / tool breakage detection is consecutively executed in the Z-axis direction and then in the Y-axis direction.</td>
</tr>
<tr>
<td>Bit 1</td>
<td>1: Automatic tool length offset / tool breakage detection is executed in the Y-axis direction.</td>
</tr>
<tr>
<td>Bit 0</td>
<td>1: Automatic tool length offset is executed. 0: Automatic tool breakage detection is executed.</td>
</tr>
</tbody>
</table>

(13) Graphic Color Specification
VGCLR
The color for color graphic display can be designated.
Color designation:
VGCLR = n
n: Integer (0 to 9)
This system variable is used to designate the color for tool path display.
n = 0: Cancel of designated color
n = 1: Blue
n = 2: Green
n = 3: Light blue
n = 4: Red
n = 5: Purple
n = 6: Yellow
n = 7: White
n = 8: Black
n = 9: Not displayed

(14) Synchronized Tapping Torque Monitor Parameter No.
VTMNO
Setting range: 1 – 5
The tapping torque monitor parameter number during synchronized tapping can be read/written. Since VTMNO is backed up, the previously used value remains valid if no new value is specified.

- Example 1:
Writing the synchronized tapping torque monitor parameter No. 3
VTMNO = 3

- Example 2:
Reading the synchronized tapping torque monitor parameter No. 3
VC1 = VTMNO
(15) Spindle Overload Monitor Parameter No.
VSLNO
Setting range: 1 – 5
For the spindle overload monitor function, the spindle overload monitor parameter number can be read/written by indicating the parameter number. Since VSLNO is backed up, the previously used value remains valid if no new value is specified.

- Example 1:
 Writing the spindle overload monitor parameter No. 3
 VSLNO = 3
- Example 2:
 Reading the spindle overload monitor parameter No. 3
 VC1 = VSLNO

(16) F1-digit Parameter Feedrate
VPF1F[expression]
Expression: Specified number for F1-digit parameter feed
Allowable value: 1 – 9
The feedrate for the specified F-1 digit parameter feed number can be read/written.

- Example 1:
 Writing feedrate for F-1 digit parameter feed No. 3.
 VPF1F[3] = 20
 - µm unit system
 Feedrate of 20 µm is set for parameter No. 3.
 - mm unit system
 Feedrate of 20 mm is set for parameter No. 3.
- Example 2:
 Reading the feedrate set for F-1 digit parameter feed No. 3.
 Assume that feedrate set for F-1 digit parameter feed No. 3 is 20 mm.
 VC1 = VPF1F[3]
 - µm unit system
 VC1 = 20000
 - mm unit system
 VC1 = 20

(17) F1-digit Parameter Maximum Value
VPF1M[expression]
Expression: Specified number for F1-digit parameter feed
Allowable value: 1 – 9
The maximum feedrate for the specified F-1 digit parameter feed number can be read/written.

- Example 1:
 Writing the maximum feedrate for F-1 digit parameter feed No. 3.
 VPF1F[3] = 20
 - µm unit system
 The maximum feedrate of 20 µm is set for parameter No. 3.
 - mm unit system
 The maximum feedrate of 20 mm is set for parameter No. 3.
- Example 2:
 Reading the maximum feedrate set for F-1 digit parameter feed No. 3.
 Assume that the maximum feedrate set for F-1 digit parameter feed number 3 is 20 mm.
 VC1 = VPF1F[3]
 - µm unit system
VC1 = 20000
- mm unit system
VC1 = 20

(18) F1-digit Parameter Accel./Decel. Data

VPF1C
Setting range: 0 – 4000000
The acceleration/deceleration data of the F1-digit parameter can be read/written.
The acceleration/deceleration data is usually set for NC optional parameter (long word) No. 22.
The data is read or written in the minimum unit system.

- Example 1:
 Writing the acceleration/deceleration data
 VPF1C = 20

- Example 2:
 Reading the acceleration/deceleration data
 Assume that the acceleration/deceleration data set for this parameter is 20 µm.
 VC1 = VPF1C
 VC1 = 20

(19) Tool Management Data

VTLD* [expression]
*: 1 to 8
Expression: Tool offset number
Allowable range: 1 to number of tool data sets
Reading/writing of the tool management data with the expression can be indicated. The objective
to be read or written is designated by “*”.
The following explains how the data is handled:

a) VTLD1: Tool group number
b) VTLD2: Tool life management mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Criterion for Tool Life Judgment</th>
<th>Replacement to Spare Tool when Tool Life is Expired</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tool life is judged on the basis of the accumulated cutting time in which the cutting tool is fed at a cutting feedrate.</td>
<td>When the T command calling the tool life expired tool is specified next</td>
</tr>
<tr>
<td>2</td>
<td>Tool is not replaced by spare tool and tool life expired tool continues to be used</td>
<td>Not used</td>
</tr>
<tr>
<td>3</td>
<td>Tool is not replaced by spare tool and tool life expired tool continues to be used</td>
<td>Tool is not replaced by spare tool and tool life expired tool continues to be used</td>
</tr>
<tr>
<td>4</td>
<td>Tool life is judged on the basis of count data such as total machined number of holes.</td>
<td>When the T command calling the tool life expired tool is specified next</td>
</tr>
<tr>
<td>5</td>
<td>Tool is not replaced by spare tool and tool life expired tool continues to be used</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>Tool is not replaced by spare tool and tool life expired tool continues to be used</td>
<td>Tool is not replaced by spare tool and tool life expired tool continues to be used</td>
</tr>
<tr>
<td>0</td>
<td>Tool life judgment is not conducted.</td>
<td>-</td>
</tr>
</tbody>
</table>

c) VTLD3: OK/NG flag

Bit 0 to 4: Used for other functions (Never attempt to change)
5: NG1
6: NG2
7: NG3
d) VTLD4: Tool life flag
 Bit 0: Tool life
 1: Tool wear
 2: Overload
 3: Torque
 4:
 5: Breakage
 6:
 7: User

e) VTLD5: Second tool offset number

f) VTLD6: Third tool offset number

g) VTLD7: Tool life management setting value
 h1: 2-byte data
 - When tool life is judged on the basis of accumulated cutting time (tool life mode: 1 to 3):
 \[0 \leq h1 \leq 32767\] (unit: min.)
 - When tool life is judged on the basis of count data (tool life mode: 4 to 6):
 \[0 \leq h1 \leq 32767\]
 - When tool life management is not executed (tool life mode: 0):
 No restriction

h) VTLD8: Remaining tool life value
 3-byte data:
 2 bytes at the left\(h2\)
 1 byte at the right\(h3\)
 - When tool life is judged on the basis of accumulated cutting time (tool life mode: 1 to 3):
 \[-32768 \leq h2 \leq 32767\] (unit: min.)
 \[0 \leq h3 \leq 59\] (unit: sec.)
 Example:
 Reading remaining tool life value of the tool whose tool management number is 10
 1) Reading in units of minutes:
 \[VC1 = VTLD8[10]/256\] [Cutting off lower one byte]
 \[VC1 = \text{FIX}[VC1]\]
 2) Reading in units of seconds:
 \[VC1 = VTLD8[10]\]
 \[VC1 = VC1 \text{ AND} 255\] [Masking of lower one byte]
 - When tool life is judged on the basis of count data (tool life mode: 4 to 6):
 \[0 \leq h2 \leq 65535\]
 Always \(h3 = 0\)
 - When tool life management is not executed (tool life mode: 0):
 No restriction
(20) MOP Tool Number
VMPT
Setting range: 0 – 9 (integer)
This system variable sets the classification number of the MOP-TOOL tool data.
When using the same tool for rough machining and finishing, the selection of MOP-TOOL tool data can be changed by setting different numbers for VMPT.

- Example:
 Enter VMPT = 0 in the NC program for rough machining and VMPT = 1 for finishing with the following tool number set as the tool data for MOP-TOOL.
 Tool number in MOP-TOOL data = 50-0 Tool data for rough machining
 Tool number in MOP-TOOL data = 50-0 Tool data for finishing

(21) MOP Control 1
VMPC1
Expression: Tool offset number
Allowable value: 1 to Number of tool data sets
It is possible to designate sampling of no-load data (for collective method data).
Sampling of no-load data is valid only when VMCP2 = 1 and the MOP-TOOL operation mode is “monitoring”.

- Bit 7
 1: No-load data sampling ON
 0: No-load data sampling OFF

- Bit 0 to bit 3
 Designate the load data number for which no-load data sampling is to be executed.

- Example:
 VMPC1 = #80H.....Sampling of data under no-load condition for load data No. 1
 VMPC1 = #81H.....Sampling of data under no-load condition for load data No. 2
 VMPC1 = #82H.....Sampling of data under no-load condition for load data No. 3
 ...
 VMPC1 = #8FH.....Sampling of data under no-load condition for load data No. 16
 VMPC1 = #00H.....No-load data sampling OFF

(22) MOP Control 2
VMPC2
Designates the ON/OFF status of MOP-TOOL.
0: MOP OFF
1: MOP ON

(23) MOP Control 3
VMPC3
The overload monitoring function can be turned ON/OFF.

- Bit 7
 1: Load data No. 1 overload monitoring ON
 0: Load data No. 1 overload monitoring OFF

- Bit 6
 1: Load data No. 2 overload monitoring ON
 0: Load data No. 2 overload monitoring OFF

- Bit 5
 1: Load data No. 3 overload monitoring ON
 0: Load data No. 3 overload monitoring OFF

- Bit 4
 1: Load data No. 4 overload monitoring ON
 0: Load data No. 4 overload monitoring OFF

- Bit 3
1: Load data No. 5 overload monitoring ON
0: Load data No. 5 overload monitoring OFF

- Bit 2
 1: Load data No. 6 overload monitoring ON
 0: Load data No. 6 overload monitoring OFF

- Bit 1
 1: Load data No. 7 overload monitoring ON
 0: Load data No. 7 overload monitoring OFF

- Bit 0
 1: Load data No. 8 overload monitoring ON
 0: Load data No. 8 overload monitoring OFF

(24) MOP Control 4
VMPC4
The air-cut reduction function can be turned ON/OFF.

- Bit 7
 1: Air cut reduction for load data No. 1 ON
 0: Air cut reduction for load data No. 1 OFF

- Bit 6
 1: Air cut reduction for load data No. 2 ON
 0: Air cut reduction for load data No. 2 OFF

- Bit 5
 1: Air cut reduction for load data No. 3 ON
 0: Air cut reduction for load data No. 3 OFF

- Bit 4
 1: Air cut reduction for load data No. 4 ON
 0: Air cut reduction for load data No. 4 OFF

- Bit 3
 1: Air cut reduction for load data No. 5 ON
 0: Air cut reduction for load data No. 5 OFF

- Bit 2
 1: Air cut reduction for load data No. 6 ON
 0: Air cut reduction for load data No. 6 OFF

- Bit 1
 1: Air cut reduction for load data No. 7 ON
 0: Air cut reduction for load data No. 7 OFF

- Bit 0
 1: Air cut reduction for load data No. 8 ON
 0: Air cut reduction for load data No. 8 OFF

(25) MOP Control 5
VMPC5
Used to turn the adaptive control function ON/OFF.

- Bit 7
 1: Adaptive control for load data No. 1 ON
 0: Adaptive control for load data No. 1 OFF

- Bit 6
 1: Adaptive control for load data No. 2 ON
 0: Adaptive control for load data No. 2 OFF

- Bit 5
 1: Adaptive control for load data No. 3 ON
0: Adaptive control for load data No. 3 OFF

- Bit 4
 1: Adaptive control for load data No. 4 ON
 0: Adaptive control for load data No. 4 OFF

- Bit 3
 1: Adaptive control for load data No. 5 ON
 0: Adaptive control for load data No. 5 OFF

- Bit 2
 1: Adaptive control for load data No. 6 ON
 0: Adaptive control for load data No. 6 OFF

- Bit 1
 1: Adaptive control for load data No. 7 ON
 0: Adaptive control for load data No. 7 OFF

- Bit 0
 1: Adaptive control for load data No. 8 ON
 0: Adaptive control for load data No. 8 OFF

1-4-2. Read/Write System Variables Requiring Special Attention in Writing

CAUTION

The system variables ((1) to (9)) explained below have critical influence over machine operations. After they have been written, the machined surface will deteriorate, or unexpected interference will result, if the written values are re-set to the original values. Therefore, do not attempt to write them unless absolutely necessary.

(1) Positive Travel End Limit Value
VPSL*
*: Axis nameX to Z, U to W, A to C

The travel limit in the positive direction for the axis indicated by the axis name can be read/written. This sets the data for user parameter “P PROG LIMIT MC” that is accessible in the parameter setting mode. For this operation, the unit system is as set at NC optional parameter (INPUT UNIT SYSTEM). The value to be set is determined in the machine coordinate system.

NOTICE

The travel end limit (+) is set as a value in the machine coordinate system, but if this system variable is re-written, this value, converted to the value in the work coordinate system, is simultaneously set as the programmable travel end limit (+).

- Example 1:
 Reading X-axis travel end limit (+)
 Assume that:
 Travel end limit (+) is 500 mm (19.69 in.) in the work coordinate system, and
 Work zero of the currently selected work coordinate system No. 2 is X = 150 mm (7.09 in.)

VC1 = VPSLX............... Reading travel end limit (+) in the machine coordinate system
VC2 = VACOD............... Reading current coordinate system number
VC3 = VC1 – VZOFX [VC2]...... Conversion of read travel end limit (+) into the value in the work coordinate system

- μm unit system
VC1 = 650000 VC2 = 2 VC3 = 500000

- mm unit system
 VC1 = 650 VC2 = 2 VC3 = 500

(2) Negative Travel End Limit Value
VNSL*: Axis name X to Z, U to W, A to C
The travel limit in the positive direction for the axis indicated by the axis name can be read/written. This sets the data for user parameter “N PROG LIMIT MC” that is accessible in the parameter setting mode. For this operation, the unit system is as set at NC optional parameter (INPUT UNIT SYSTEM). The value to be set is determined in the machine coordinate system.

NOTICE

- Example 1:
 Reading X-axis travel end limit (–)
 Assume that:
 Travel end limit (–) is –500 mm (19.69 in.) in the work coordinate system, and
 Work zero of the currently selected work coordinate system No. 2 is X = 150 mm (7.09 in.)
 VC1 = VNSLX.................. Reading travel end limit (–) in the machine coordinate system
 VC2 = VACOD.................. Reading current coordinate system number
 VC3 = VC1 – VZOFX [VC2]..... Conversion of read travel end limit (–) into the value in the work coordinate system

 - µm unit system
 VC1 = –650000 VC2 = 2 VC3 = –500000

 - mm unit system
 VC1 = –650 VC2 = 2 VC3 = –500

(3) Backlash Compensation Value
VBLC*: Axis name X to Z, U to W, A to C
The backlash compensation value of the axis indicated by the axis name can be read and written. This sets the data for user parameter “BACKLASH” that is accessible in the parameter setting mode. For this operation, the unit system is as set at NC optional parameter (INPUT UNIT SYSTEM).

- Example 1:
 Reading X-axis backlash compensation value
 Assume that backlash compensation value of X-axis is 0.05 mm (0.002 in.).
 VC1 = VBLCX

 - µm unit system
 VC1 = 50

 - mm unit system
 VC1 = 0.05

(4) In-position Width
VINP*: Axis name X to Z, U to W, A to C
The in-position width value of the axis indicated by the axis name can be read and written. This sets the data for system parameter “IN POSITION” that is accessible in the parameter setting mode.
mode. For this operation, the unit system is as set at NC optional parameter (INPUT UNIT SYSTEM).

- Example 1:
 Reading X-axis in-position width
 Assume that the in-position width of the X-axis is 0.003 mm.
 \[VC1 = V\text{INPX} \]
 - \(\mu \text{m} \) unit system
 \[VC1 = 3 \]
 - \(\text{mm} \) unit system
 \[VC1 = 0.003 \]

5) In-position Width for Home Position

\(\text{VHPI}^* \)

*: Axis name X to Z, U to W, A to C

The in-position width for home position of the axis indicated by the axis name can be read and written. This sets the data for system parameter “IN POSITION (H)” that is accessible in the parameter setting mode. For this operation, the unit system is as set at NC optional parameter (INPUT UNIT SYSTEM).

- Example 1:
 Reading the in-position width for home position of X-axis
 Assume that in-position width for X-axis home position is 0.020 mm.
 \[VC1 = \text{VHPIX} \]
 - \(\mu \text{m} \) unit system
 \[VC1 = 20 \]
 - \(\text{mm} \) unit system
 \[VC1 = 0.02 \]

6) Origin of Machine Coordinate System

\(\text{VMOF}^* \)

*: Axis name X to Z, U to W, A to C

The zero point of the machine coordinate system on the axis indicated by the axis name can be read and written. This sets the data for system parameter “ZERO OFFSET (MACHINE)” that is accessible in the parameter setting mode. For this operation, the unit system is as set at NC optional parameter (INPUT UNIT SYSTEM).

- Example 1:
 Reading X-axis origin of machine coordinate system
 Assume that the X-axis zero point of the machine coordinate system is 2675.632 mm.
 \[VC1 = \text{VMOFX} \]
 - \(\mu \text{m} \) unit system
 \[VC1 = 2675632 \]
 - \(\text{mm} \) unit system
 \[VC1 = 2675.632 \]

7) Home Position Location

\(\text{VHPP}^* \) [expression]

*: Axis name X to Z, U to W, A to C

Expression: Home position number
Allowable value: 1 – 32

The home position location can be read and written by indicating the home position number with the expression and also by indicating the axis name. The home position is referenced to the machine zero position. This sets the data for system parameter “HOME POSITION 1 – 32” that is accessible in the parameter setting mode. For this operation, the unit system is as set at NC optional parameter (INPUT UNIT SYSTEM).
• Example 1:
 Reading No. 3 home position location of X-axis
 Assume that No. 3 home position location (X-axis) is at 457.987 mm.
 \[VC1 = VHPPX[3] \]
 • µm unit system
 \[VC1 = 457987 \]
 • mm unit system
 \[VC1 = 457.987 \]

(8) Sensor Contact Value
VSAP*
*: Axis name X to Z, U to W, A to C
The contact point of the sensor or the touch probe after the execution of the maker subprogram (MSB) for the automatic gauging cycle can be read and written. The contact position coordinate value of the axis designated by the axis name is read or written. For this operation, the unit system is as set at NC optional parameter (INPUT UNIT SYSTEM). The value is referenced from the zero point of the position encoder.

• Example 1:
 Reading sensor contact point value on the X-axis
 Assume that:
 • Sensor contact point value from the zero position of the position encoder: 3500 mm
 • Origin of machine coordinate system: 2000 mm
 • Work coordinate system currently selected: No. 2
 • Zero point (X) in the work coordinate system: 700 mm
 \[VC1 = 3500000 \quad VC2 = 1500000 \quad VC3 = 2 \quad VC4 = 800000 \]
 • µm unit system
 \[VC1 = 3500 \quad VC2 = 1500 \quad VC3 = 2 \quad VC4 = 800 \]

(9) Active Tool Number
VTLCN
The tool number of the tool presently set in the spindle can be read and written.

• Example 1:
 Reading the active tool number
 \[VC1 = VTLCN \]

NOTICE
Read only for the machine with ATC.

(10) Next Tool Number
VTLNN
The tool number of the next tool can be read and written.
• Example 1:
 Reading the next tool number
 \(VC_1 = VTLNN \)

NOTICE

Read only for the machine with ATC.

1-4-3. Read Only System Variables

(1) Calculated Value

\(VR_{CO}^* \)

*: Axis name X to Z, U to W, A to C

The calculated value (CON) of the axis designated by the axis name can be read. For this operation, the unit system is as set at NC optional parameter (INPUT UNIT SYSTEM). The value is referenced from the zero point of the position encoder.

• Example 1:
 Reading the calculated X-axis position
 Assume that:
 • Calculated value: 3750 mm
 • Zero in the machine coordinate system: 2500 mm
 • Work coordinate system: No. 2
 • Work zero (X): 800 mm

\(VC_1 = VR_{COX} \) \hspace{1cm} \text{Reading the calculated value read (referenced to the zero point of position encoder)}

\(VC_2 = VC_1 - VMO_{FX} \) \hspace{1cm} \text{Read value is converted into the value in the machine coordinate system}

\(VC_3 = VAC_{COD} \) \hspace{1cm} \text{Reading the number of the present work coordinate system}

\(VC_4 = VC_2 - VZO_{FX}[VC_3] \) \hspace{1cm} \text{The value is converted into the value in the work coordinate system}

• \(\mu m \) unit system
 \(VC_1 = 3750000 \hspace{1cm} VC_2 = 1250000 \hspace{1cm} VC_3 = 2 \hspace{1cm} VC_4 = 450000 \)

• \(mm \) unit system
 \(VC_1 = 3750 \hspace{1cm} VC_2 = 1250 \hspace{1cm} VC_3 = 2 \hspace{1cm} VC_4 = 450 \)

(2) Actual Position Data

\(VA_{PA}^* \)

*: Axis name X to Z, U to W, A to C

The actual value (APA) of the axis designated by the axis name can be read. For this operation, the unit system is as set at NC optional parameter (INPUT UNIT SYSTEM). The value is referenced from the zero point of the position encoder.

• Example 1:
 Reading the actual X-axis position
 Assume that:
 • Actual value: 3750 mm
 • Zero in the machine coordinate system: 2500 mm
 • Work coordinate system: No. 2
• Work zero (X): 800 mm
VC1 = VAPAI......................... Reading the actual value of the machine (referenced to the zero position of the position encoder)
VC2 = VC2 – VMOFX............... Read value is converted into the value in the machine coordinate system
VC3 = VACOD......................... Reading the number of the present work coordinate system
VC4 = VC2 – VZOFX [VC3]............. The value is converted into the value in the work coordinate system

• µm unit system
VC1 = 3750000 VC2 = 1250000 VC3 = 2 VC4 = 450000
• mm unit system
VC1 = 3750 VC2 = 1250 VC3 = 2 VC4 = 450

(3) Active Work Coordinate System Number
VACOD
The work coordinate system number of the work coordinate system presently selected can be read.

• Example 1:
 Present work coordinate system number 2
 VC1 = VRCOX
 VC2 = VC1 – VMOFX
 VC3 = VACOD
 VC4 = VC2 – VZOFX [VC3]
 VC3 = 2.

(4) Active Tool Number
VATOL
The tool management number (tool kind + tool number) of the tool presently set in the spindle can be read. The data is two-byte data; the upper six bits show the tool kind and the lower ten bits represent the tool number.

Tool kind (Some tool kinds cannot be set depending on the machine specifications.)

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* : 0 or 1

bit 15
0: Normal tool
1: Large-diameter tool (L)

bit 14 to bit 11
0: Normal tool 4: Attachment tool (A)
1: Heavy tool (M) 5: Attachment heavy tool (AM)
2: Planer tool (P) 6: U-axis tool (U)
3: Planer heavy tool (PM)

Tool number

<table>
<thead>
<tr>
<th>Bit 9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* : 0 or 1
• Example 1:
 Reading the management number of the active tool (Normal tool with the tool number 10)
 VC1 = VATOL
 VC1 = 10 (#0000000000001010)

• Example 2:
 Reading the management number of the active tool (Large-diameter tool with the tool number 10)
 VC1 = VATOL
 VC1 = 32778 (#1000000000001010)

• Example 3:
 Reading the active tool number (Heavy tool with the tool number 1)
 VC1 = VATOL
 VC2 = VATOL AND #03FFH
 VC1 = 2049 (#0000100000000001)
 VC2 = 1 (#0000000000000001)

(5) Next Tool Number

VNTOL

The tool management number (tool kind + tool number) of the tool to be used next can be read. The data is two-byte data; the upper six bits show the tool kind and the lower ten bits represent the tool number.

Tool kind (Some tool kinds cannot be set depending on the machine specifications.)

<table>
<thead>
<tr>
<th>bit 15</th>
<th>bit 14</th>
<th>bit 13</th>
<th>bit 12</th>
<th>bit 11</th>
<th>bit 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0</td>
</tr>
</tbody>
</table>

 * : 0 or 1

bit 15
0: Normal tool
1: Large-diameter tool (L)

bit 14 to bit 11
0: Normal tool
1: Heavy tool (M)
2: Planer tool (P)
3: Planer heavy tool (PM)
4: Attachment tool (A)
5: Attachment heavy tool (AM)
6: U-axis tool (U)

Tool number

<table>
<thead>
<tr>
<th>bit 9</th>
<th>bit 8</th>
<th>bit 7</th>
<th>bit 6</th>
<th>bit 5</th>
<th>bit 4</th>
<th>bit 3</th>
<th>bit 2</th>
<th>bit 1</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

 * : 0 or 1

• Example 1:
 Reading the management number of the next tool (Normal tool with the tool number 10)
 VC1 = VNTOL
 VC1 = 10

• Example 2:
 Reading the management number of the next tool (Large-diameter tool with the tool number 10)
 VC1 = VNTOL
 VC1 = 32778
• Example 3:
 Reading only the next tool number (Heavy tool with the tool number 1)
 \[VC1 = \text{VNTOL} \]
 \[VC2 = \text{VNTOL AND } #03FFH \]
 \[VC1 = 2049 \]
 \[VC2 = 1 \]

(6) Number of Coordinate Systems and Tool Data Sets (NC specification code No. 2)
VSPCO
The 1-byte specification code data which indicates the number of coordinate systems and tool data sets can be read. The relationship between the bit data and the specifications is indicated in the following table.

<table>
<thead>
<tr>
<th>Bit No.</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 7</td>
<td>100 sets of tool data</td>
</tr>
<tr>
<td>Bit 6</td>
<td>300 sets of tool data</td>
</tr>
<tr>
<td>Bit 5</td>
<td>200 sets of tool data</td>
</tr>
<tr>
<td>Bit 4</td>
<td>50 sets of coordinate systems</td>
</tr>
<tr>
<td>Bit 3</td>
<td>20 sets of coordinate systems</td>
</tr>
<tr>
<td>Bit 2</td>
<td></td>
</tr>
<tr>
<td>Bit 1</td>
<td></td>
</tr>
<tr>
<td>Bit 0</td>
<td>Large-volume program storage function</td>
</tr>
</tbody>
</table>

VSPSB
The 1-byte specification code data which indicates the maker subprogram specifications can be read. The relationship between the bit data and the specifications is indicated in the following table.

<table>
<thead>
<tr>
<th>Bit No.</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 7</td>
<td>Maker subprogram creating subprogram, standard tool 150 mm</td>
</tr>
<tr>
<td>Bit 6</td>
<td>FM-type touch probe subprogram</td>
</tr>
<tr>
<td>Bit 5</td>
<td>Automatic zero offset subprogram</td>
</tr>
<tr>
<td>Bit 4</td>
<td>Dimension check subprogram</td>
</tr>
<tr>
<td>Bit 3</td>
<td>Optical touch probe subprogram</td>
</tr>
<tr>
<td>Bit 2</td>
<td>Automatic tool breakage detection subprogram</td>
</tr>
<tr>
<td>Bit 1</td>
<td>Automatic cutter radius compensation subprogram</td>
</tr>
<tr>
<td>Bit 0</td>
<td>Automatic tool length offset subprogram</td>
</tr>
</tbody>
</table>

(8) Machine Lock
VMLOK
It is possible to read whether or not the NC is presently in the machine lock status.

• Example 1:
 When the NC is in the machine lock status
 \[VC1 = \text{VMLOK} \]
 \[VC1 = 128. \]

• Example 2:
 When the NC is not in the machine lock status
 \[VC1 = \text{VMLOK} \]
 \[VC1 = 0. \]

(9) 3D Graphic Viewing Angle (Horizontal)
VGRH
The view angle from the horizontal plane in the 3D graphic display can be read. The unit of the value read is degrees (°).

- Example:
 - Reading 3D graphic view angle H

 VC1 = VGRH

(10) 3D Graphic Viewing Angle (Vertical)
VGRV
The viewing angle from the vertical plane in the 3D graphic display can be read. The unit of the value read is degrees (°).

- Example:
 - Reading 3D graphic view angle V

 VC1 = VGRV

(11) Feedrate Clamp Value
VFMDX
The feedrate clamp value (the data set for NC optional parameter (long word) No. 10) can be read.

- Example:
 - Reading the feedrate clamp value

 VC1 = VFMDX

(12) Program Unit System
VINCH
The unit system (set for NC optional parameter (INPUT UNIT SYSTEM), or NC optional parameter (bit) No. 3, bit 0 to bit 7 and No. 4, bit 0) used for the program which is being executed can be read.

- Example 1:
 - If the setting for “LENGTH UNIT SYSTEM” of NC optional parameter (INPUT UNIT SYSTEM) No. 3 is “inch” and “1”, respectively.

 VC1=VINCH

 VC1=3

The following shows the setting items on the NC Optional Parameter (INPUT UNIT SYSTEM) screen and the setting items of NC optional parameter (bit).
NC Optional Parameter (INPUT UNIT SYSTEM) screen

NC Optional Parameter (bit) No. 3, bit 0 to bit 8 and No. 4, bit 0

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Bit No.</th>
<th>Contents</th>
<th>Check Mark</th>
<th>Without Check Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Unit for distance is either “mm” or “inches”.(2)</td>
<td>inch</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Units are “1 mm”, “1 inch”, “1 degree”, or “1 sec.”.</td>
<td>Same as indicated in the left</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Unit for distance is either “0.01 mm”, or “0.001 mm”.</td>
<td>0.01 mm</td>
<td>0.001 mm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Unit for feedrate is either “0.1 mm/min, 0.01 in/min”, or “1 mm/min, 0.1 in/min”.</td>
<td>0.1 mm/min, 0.01 in/min</td>
<td>1 mm/min, 0.1 in/min</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Unit for feedrate is either “0.001 mm/min, 0.0001 in/min”, or “0.01 mm/min, 0.001 in/min”.</td>
<td>0.001 mm/rev, 0.0001 in/rev</td>
<td>0.01 mm/rev, 0.001 in/rev</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Unit for time is either 0.01 sec or 0.1 sec.</td>
<td>0.01 sec</td>
<td>0.1 sec</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>For decimal point data, the decimal point position indicates 1 mm, 1 inch, 1 deg or 1 sec.</td>
<td>Same as indicated in the left</td>
<td>Conform to the setting of bits 1 to 5 and bit 7.</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Unit for time is either 0.001 sec or 0.1 sec. (1)</td>
<td>0.001 sec</td>
<td>0.1 sec</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>Unit for angle is either 0.001 degree or 0.0001 degree.</td>
<td>0.001 degree</td>
<td>0.0001 degree</td>
</tr>
</tbody>
</table>

(1) If the setting for bit 5 is “1”, unit of time is always 0.01 sec.

(2) The setting for bit 0 is valid only when inch / mm switchable specification is selected.
(13) Sequence Restart Flag
 VRSTT
 The flag that is turned on when the restart search command (RS) is executed in the automatic mode and turned off after the designated sequence is located can be read.
 Setting range: Binary 8 bits (1 byte)
 - Example 1:
 During sequence restart
 VC1 = VRSTT
 VC1 = 128
 - Example 2:
 Not in sequence restart
 VC1 = VRSTT
 VC1 = 0

(14) Operating Time Counter
 VDTIM[α, β]
 The time counted by counters and their set values are read.
 - Example:
 The sequence jumps to N010 when the cutting time reaches 10 hours.

 N001 IF [VDTIM [4, 1] EQ 10] N010
 N002
 :
 :
 N010

(15) Work Counter
 VWRKC[α, β]
 The values counted by counters, and their set values, are read.
 - Example:
The sequence jumps to N010 when the count value at work counter A reaches 5.

N001 IF [VWRKC [1, 1] EQ 5] N010
N002
:.
N010

(16) G Code

\[\text{VGCOD}[\text{expression}] \]
Expression: Group number of the G code
Allowable range: 1 – 96
The mode of the present G code groups can be read.
The value to be read is the numerical value of a G code. However, “254” is read for G00.

<table>
<thead>
<tr>
<th>Group</th>
<th>G Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G0 G1 G2 G3 G60</td>
</tr>
<tr>
<td>2</td>
<td>G4</td>
</tr>
<tr>
<td>3</td>
<td>G10 G11</td>
</tr>
<tr>
<td>4</td>
<td>G15 G16</td>
</tr>
<tr>
<td>5</td>
<td>G17 G18 G19</td>
</tr>
<tr>
<td>6</td>
<td>G22 G23</td>
</tr>
<tr>
<td>7</td>
<td>G40 G41 G42</td>
</tr>
<tr>
<td>8</td>
<td>G43 G44</td>
</tr>
<tr>
<td>9</td>
<td>G50 G51</td>
</tr>
<tr>
<td>10</td>
<td>G53 G54 G55 G56 G57 G58 G59</td>
</tr>
<tr>
<td>11</td>
<td>G73 G74 G76 G80 G81 G82 G83 G84 G85 G86 G87 G89 G274 G284</td>
</tr>
<tr>
<td>12</td>
<td>G90 G91</td>
</tr>
<tr>
<td>13</td>
<td>G94 G95</td>
</tr>
<tr>
<td>14</td>
<td>G61 G64</td>
</tr>
<tr>
<td>15</td>
<td>G20 G21</td>
</tr>
<tr>
<td>16</td>
<td>G30</td>
</tr>
<tr>
<td>17</td>
<td>G31</td>
</tr>
<tr>
<td>18</td>
<td>G09</td>
</tr>
<tr>
<td>19</td>
<td>G62</td>
</tr>
<tr>
<td>20</td>
<td>G92</td>
</tr>
<tr>
<td>21</td>
<td>G71</td>
</tr>
<tr>
<td>22</td>
<td>G101-G120</td>
</tr>
<tr>
<td>66</td>
<td>G186 G187</td>
</tr>
<tr>
<td>78</td>
<td>G174 G175</td>
</tr>
</tbody>
</table>

- **Example 1:**
 - In the G00 mode
 - \(VC1 = \text{VGCOD}[1] \)
 - \(VC1 = 254 \).
- **Example 2:**
 - In the G1 mode in incremental mode
 - \(VC1 = \text{VGCOD}[1] \)
 - \(VC2 = \text{VGCOD}[12] \)
 - \(VC1 = 1, VC2 = 91 \).

(17) S Code

\[\text{VSCOD} \]
The command value of the present spindle speed command (S) can be read as programmed.
The setting of the spindle speed override dial is ignored and the programmed value is read as programmed.

- **Example:**
 - S1200
 - \(VC1 = \text{VSCOD} \)
 - \(VC1 = 1200 \)
(18) F Code
VFCOD
The command value of the present feedrate (F) can be read.
Setting of the feedrate override dial is ignored and the unit of the data to be read is 0.1 mm/min
(for feed per minute mode) or 1 µm/rev (for feed per revolution mode).
Note that conversion to the English system (inches) is not carried out.
- Example 1:
 Reading the feedrate in units of inch/rev to variable VFCOD/10 when the programming unit
 system "mm" and G94 mode is active.
 \[VC1 = \frac{VFCOD}{10} \]
- Example 2:
 Reading the feedrate in units of inch/rev to variable VC1 when the programming unit system
 "inch" and G95 mode is active.
 \[VC1 = \frac{VFCOD}{1000 \times 25.4} \]
 Note that VFCOD reads only 4-digit F commands and will not be changed by 1-digit F com-
 mands.

(19) D Code
VDCOD
The present cutter radius compensation number can be read.
- Example:
 Assume that the present cutter radius compensation number is “5”.
 \[VC1 = VDCOD \]
 \[VC1 = 5. \]

(20) H Code
VHCOD
The present tool length offset number can be read.
- Example:
 Assume that the present tool length offset number is “5”.
 \[VC1 = VHCOD \]
 \[VC1 = 5. \]

(21) Mirror Image
VMRI
The present status of the mirror image function can be read.
The data is of one-byte length and each axis corresponds to each bit.
Mirror image ON: 1
Mirror image OFF: 0

<table>
<thead>
<tr>
<th>bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>6th-axis</td>
<td>5th-axis</td>
<td>4th-axis</td>
<td>Z-axis</td>
<td>Y-axis</td>
<td>X-axis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Example:
 Procedure for checking whether or not the mirror image function is active for the X and Z-
 axes.
 \[VC1 = 1 + 4 \times \text{X-axis mask (2)} + \text{Z-axis mask (2)} \]
 \[VC2 = \text{VMRI AND VC1} \]
 \[\text{IF } [\text{VC2 EQ 0}] \text{ N1} \]
(22) Internal Clock

VPMNT: A “minute counter” which is cleared hourly can be read.
Allowable range: 0 – 59 (unit: minute).
VRMNT: A 4-byte free-running minute counter can be read.
VPHUR: An “hour counter” which is cleared daily can be read.
Allowable range: 0 – 23 (unit: hour)
VRHUR: A 4-byte free-running hour counter can be read.
VQDAT: A 2-byte free-running date counter can be read.
The free-running counter is cleared by turning on/off the power supply.

- Example:
 To turn on the 60 minute timer
 The example below assumes that the duration after turning on the power supply is much smaller than two minutes.
 VC1 = VRMNT
 NA1 VC2 = VRMNT - VC1
 IF [VC2 GE 60] NA2
 GOTO NA1

(23) Manual Intervention Shift Amount

VMSF*
*: Axis name X to Z, U to W, A to C
The manual intervention shift amount of the axis indicated by the axis name can be read. For this operation, the unit system is as set at NC optional parameter (INPUT UNIT SYSTEM).

- Example:
 Reading manual intervention shift amount
 Assume that manual intervention shift amount (X) is 150 mm (5.91 in.).
 VC1 = VMSFX
 • μm unit
 VC1 = 150000
 • mm unit
 VC1 = 150

(24) Torque Monitor During Synchronized Tapping

VTMDT[expression]
Expression: Synchronized tapping torque monitor parameter No.
Setting range: 1 to 5
The set value for the synchronized tapping torque monitor parameter No. designated by the expression can be read.

- Example:
 Reading the value of synchronized tapping torque monitor parameter No. 3
 (Assume that the set value for synchronized tapping torque monitor parameter No. 3 is 100 kgf·m)
 VC1 = VTMDT[3]
 VC1 = 100.
(25) Spindle Overload Monitor Parameter
VSLDT[a,b]
 a: Spindle overload monitor parameter No.
Setting range: to 5
 b: Spindle overload monitor parameter type
Setting range: to 3
1...Maximum load value (%) for spindle overload monitor parameter
2...Continuously overloaded time (sec.) for spindle overload parameter
3...Monitor mode (alarm level) for spindle overload parameter
It is possible to read the set value for the spindle overload monitor (simple load monitor) parameter number designated by “a”.
- Example:
 Reading the value for the continuously overloaded time of spindle overload parameter No. 3
 (Assume that the continuously overloaded time of spindle overload parameter No. 3 is 10 sec.)
 VC1 = VSLDT [3, 2]
 VC1 is 10 sec.

(26) Number of Tools for ATC
VSPTN
The number of tool pots in the ATC magazine can be read.
- Example:
 Reading the number of tool pots in the ATC
 (Assume that the number of tool pots in the ATC magazine is “50”.)
 VC1 = VSPTN
 VC1 = 50.

(27) PPC Pallet Number (for the PPC specification)
VPLNO
The pallet number of the pallet presently mounted on the machine table can be read. When machining identical workpieces using several pallets, system variable VPLNO is used to assign different work coordinate systems for the individual pallets if the zero offset values differ slightly among the pallets to be used.
- Example 1:
 Assume that #1000 workpieces are set on the pallets No. 1 and No. 2, and that the work coordinate systems used for these pallets are as indicated below:
 Work coordinate system No. 11 for pallet No. 1
 Work coordinate system No. 12 for pallet No. 2

```
O1000
N001  IF [VPLN0 EQ 1] N010.................N010 To N010 for pallet No. 1
      IF [VPLN0 EQ 2] N020................. N020 To N020 for pallet No. 2
      MSG(PALLET NO NG)
      GOTO NEND ...............................
      G15 H11 GOTO N100 ..................
      G15 H12 GOTO N100 ..................
      T1 ..........................................
      M02
```
... Part program for workpiece #1000
(28) PPC Parameters (for the PPC specification)

VPPCP [PPC parameter (word) data]
VPLDT[expression] [PPC parameter (bit) data]

When multiple number of workpieces is set on a pallet with PPC set ON, this system variable is used to indicate the positions where the workpieces are set. The parameter must be set from the PPC panel beforehand.

VPPCP is used to read the parameters comprehensively.

VPLDT is used to read the data of the position indicated by the designated bit.

Up to 12 positions (12 bits) can be used to designate the workpiece mounting position (PPC parameter) on a single pallet.

- Example 1:

Assume that the workpieces are mounted on a pallet as shown above.

System variables VPLDT[1] through VPLDT[12] and VPPCP are set as below when individual programs are executed. These settings can be referenced from part programs.

<table>
<thead>
<tr>
<th></th>
<th>O1000 executed</th>
<th>O2000 executed</th>
<th>O0700 executed</th>
<th>O0800 executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPLDT[1]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VPLDT[2]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VPLDT[3]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VPLDT[4]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VPLDT[5]</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VPLDT[6]</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VPLDT[7]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VPLDT[8]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VPLDT[9]</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>VPLDT[10]</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>VPLDT[11]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VPLDT[12]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>VPPCP</td>
<td># 00FH</td>
<td># 030H</td>
<td># 300H</td>
<td># 800H</td>
</tr>
</tbody>
</table>
Example program

```
N001  IF  [VPLDT[1]  EQ  0 ]  N002
  G15  H1
  CALL  OSUB
N001  IF  [VPLDT[2]  EQ  0 ]  N003
  G15  H2
```

(29) Automatic Crossrail Positioning M Code

```
VECWM
```

The M code number corresponding to the present crossrail position where the crossrail was positioned using an automatic crossrail positioning M code can be read.

- 5 crossrail positioning level specification: 81 – 85
- 10 crossrail positioning level specification: 190 – 199

- Example:
 To check the crossrail position using the commands at the head of a program

```
O100
  IF  [VECWM  NE  85]  NALM ........ Checking the crossrail position
  ... 
  ... 
  GOTO  NEND
  NALM  VDOUT[992] = 10 ......... Alarm processing
  (If the level is other than M85)
NEND M02
```

(30) Active Attachment Number

```
VATNT
```

The number of the presently mounted attachment can be read.
The read number is replaced with the number of attachments.

- Example:
 When the active attachment number is 301
 VC1 = VATNT
 VC1 = 1.
1-4-4. General Rule for Automatic Conversion between Inches and Millimeters

Automatic conversion follows the settings at the NC optional parameter (INPUT UNIT SYSTEM).

(1) NC Optional Parameter (INPUT UNIT SYSTEM), part program unit system "LENGTH UNIT SYSTEM"

- Example:
 VC1 = VTOFH[1] (= "LENGTH UNIT SYSTEM" = "inch")
 Tool length offset value set at tool offset number 1 is set at VC1 in inches.

(2) NC Optional Parameter (INPUT UNIT SYSTEM), part program unit system "LENGTH"

- If the setting at LENGTH UNIT SYSTEM is “mm” and that at LENGTH is “1 (mm)”, the unit of length is “mm”.
 - Example 1:
 VC1 = VTOFH[1] (LENGTH = “1” (mm))
 VC1 = 2.5 when VTOFH[1] is 2.5 mm (0.098 in.).
 - Example 2:
 VTOFH[1] = VC1 (LENGTH = “1” (mm))
 VTOFH[1] = 5.5 mm (0.22 in.) when VC1 is 5.5.

- If the setting at LENGTH is “0.01 (mm)”, the unit of length is “0.01 mm (1/100 mm)”.
 - Example 1:
 VTOFH[1] = 100 (LENGTH = “0.01” (mm))
 Then, VTOFH[1] = 1.0 mm
 - Example 2:
 VTOFH[1] = 100 (LENGTH = “0.01” (mm))
 VC1 = 520 when VTOFH[1] is 5.2 mm (0.20 in.).

(3) NC Optional Parameter (INPUT UNIT SYSTEM), part program unit system “REAL NUMBER”

If YES is set at REAL NUMBER, system variable values are always treated in millimeter or inch disregarding of whether or not a decimal point is used.
If NO is set at REAL NUMBER, values are automatically converted according to the setting at LENGTH.

- Example 1:
 VTOFH[1] = 4 (REAL NUMBER = YES)
 Then, VTOFH[1] = 4 mm (0.16 in.)

- Example 2:
 VTOFH[1] = 4.0 (REAL NUMBER = YES)
 Then, VTOFH[1] = 4 mm (0.16 in.)

- Example 3:
 VC1 = VTOFH[1] (REAL NUMBER = YES)
 VC1 = 5.2 when VTOFH[1] = 5.2 mm (0.20 in.)
(4) How numerical values are interpreted according to the setting for NC optional parameter (INPUT UNIT SYSTEM) is summarized in the table below. Variables (local variables, common variables, system variables) in the right member of the expression are handled in the same manner as the decimal point data.

<table>
<thead>
<tr>
<th>No.</th>
<th>Setting</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>“LENGTH UNIT SYSTEM” = mm
“LENGTH” = 0.001 (mm)
“REAL NUMBER” = NO</td>
<td>• Assume VTOFH[1] = 4.2 mm
 If VC1 = VTOFH[1],
 VC1 = 4200
• Assume VTOFH[1] = 5 (or 5.0)
 VTOFH[1] = 0.005 mm</td>
</tr>
<tr>
<td>2.</td>
<td>“LENGTH UNIT SYSTEM” = inch
“LENGTH” = 0.0001 (inch)
“REAL NUMBER” = NO</td>
<td>• Assume VTOFH[1] = 1.5 in.
 If VC1 = VTOFH[1]
 VC1 = 15000
• Assume VTOFH[1] = 1 (or 1.0)
 VTOFH[1] = 0.0001 in.</td>
</tr>
<tr>
<td>3.</td>
<td>“LENGTH UNIT SYSTEM” = mm
“LENGTH” = 1 (mm)
“REAL NUMBER” = NO</td>
<td>• Assume VTOFH[1] = 4.2 mm
 If VC1 = VTOFH[1]
 VC1 = 4.2
• Assume VTOFH[1] = 2 (or 2.0)
 VTOFH[1] = 2 mm</td>
</tr>
<tr>
<td>4.</td>
<td>“LENGTH UNIT SYSTEM” = inch
“LENGTH” = 0.001 (inch)
“REAL NUMBER” = NO</td>
<td>• Assume VTOFH[1] = 1.5 in.
 If VC1 = VTOFH[1]
 VC1 = 1.5
• Assume VTOFH[1] = 2 (or 2.0)
 VTOFH = 2 in.</td>
</tr>
<tr>
<td>5.</td>
<td>“LENGTH UNIT SYSTEM” = mm
“LENGTH” = 0.01 (mm)
“REAL NUMBER” = NO</td>
<td>• Assume VTOFH[1] = 4.2 mm
 If VC1 = VTOFH[1]
 VC1 = 420
• Assume VTOFH[1] = 5 (or 5.0)
 VTOFH[1] = 0.05 mm</td>
</tr>
<tr>
<td>6.</td>
<td>“LENGTH UNIT SYSTEM” = mm
“LENGTH” = 0.001 (mm)
“REAL NUMBER” = YES</td>
<td>Same as 3.</td>
</tr>
<tr>
<td>7.</td>
<td>“LENGTH UNIT SYSTEM” = inch
“LENGTH” = 0.0001 (inch)
“REAL NUMBER” = YES</td>
<td>Same as 4.</td>
</tr>
<tr>
<td>8.</td>
<td>“LENGTH UNIT SYSTEM” = mm
“LENGTH” = 1 (mm)
“REAL NUMBER” = YES</td>
<td>Same as 3.</td>
</tr>
<tr>
<td>9.</td>
<td>“LENGTH UNIT SYSTEM” = inch
“LENGTH” = 1 (inch)
“REAL NUMBER” = YES</td>
<td>Same as 4.</td>
</tr>
<tr>
<td>10.</td>
<td>“LENGTH UNIT SYSTEM” = mm
“LENGTH” = 0.01 (mm)
“REAL NUMBER” = YES</td>
<td>• Assume VTOFH[1] = 4.2 mm
 If VC1 = VTOFH[1]
 VC1 = 4.20
• Assume VTOFH[1] = 5 (or 5.0)
 VTOFH[1] = 5 mm</td>
</tr>
</tbody>
</table>
1-4-5. Supplements

- Specifying a read only system variable at the left side will cause an alarm.
- Setting of EMPTY for system variables will cause value “0” to be set.
- System variables can be read and written even in the machine lock mode.
- Do not use system variables while in the cutter radius compensation mode.

Cutter radius compensation is executed based on the point data of the three points - actual position, programmed target point, and the next programmed target point. Therefore, the next block after the one to be executed is read in advance. The variable function is executed when the block of commands is read, i.e., before the execution of positioning to the programmed target point. However, this is not always applicable because the buffer reading may be canceled by the parameter setting.
2. **User Task 2 (Optional)**

User task 2 allows the use of system variables, and logical and function operations, in addition to the functions available with user task 1. Selection of the I/O variable function is also possible.

2-1. **I/O Variables**

The I/O variables can reference or update an I/O signal external to the system, while the system variables are used as internal data.

- I/O variables are also determined by the system and may be referenced (input variable) or updated (output variable) in a schedule program, main program, or subprogram.
- The use of a control program made by using the I/O variables and the logical and functional operations makes it possible to control external devices.

![Diagram showing I/O variables and program flow](image)

Format

Input variable: VDIN[expression]

Input variable number

Output variable: VDOUT[expression]

Output variable number

Details

- The system variables function (timer control, user alarm generation), which is effective for using the I/O variables, is also added.
- The I/O variable is referenced or updated after the previous sequence is executed.
- Updating (defined left of the equal sign “=”), the input variable or referencing (defined right of the equal sign) the output variable results in an alarm.
2-1-1. Input Variables (VDIN)

<table>
<thead>
<tr>
<th>Input Variable No. n</th>
<th>Data Contents</th>
<th>Input Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 16</td>
<td>Reading the bit data of 16 input points</td>
<td>I/O unit input</td>
</tr>
<tr>
<td></td>
<td>1 : ON 0 : OFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bit [15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The number (n) is corresponded to “bit”.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = [16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1]</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Reading the 1 byte data; n = 9 to 16 corresponds to bits 0 through 7</td>
<td>I/O unit input</td>
</tr>
<tr>
<td>18</td>
<td>Reading the 1 byte data; n = 1 to 8 corresponds to bits 0 through 1</td>
<td>I/O unit input</td>
</tr>
<tr>
<td>20</td>
<td>Reading the 1 word data; n = 1 to 16 corresponds to bits 0 through 15</td>
<td>I/O unit input</td>
</tr>
<tr>
<td>1000</td>
<td>Free running time counter; 0.001 sec.</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>Free running time counter; 1 sec.</td>
<td></td>
</tr>
<tr>
<td>1002</td>
<td>Free running time counter; 1 min.</td>
<td></td>
</tr>
<tr>
<td>1003</td>
<td>Free running time counter; 1 hour</td>
<td></td>
</tr>
<tr>
<td>1004</td>
<td>Free running time counter; 1 day</td>
<td></td>
</tr>
</tbody>
</table>

*: Data at 1000 to 1004 is cleared to zero (0) when the power supply is turned on; it is not cleared by the NC reset operation.

2-1-2. Output Variable (VDOUT)

<table>
<thead>
<tr>
<th>Output Variable No. n</th>
<th>Data Contents</th>
<th>Output Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 16</td>
<td>Outputting the bit data of 16 output points</td>
<td>I/O unit output</td>
</tr>
<tr>
<td></td>
<td>1 : ON 0 : OFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bit [15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The number (n) is corresponded to “bit”.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = [16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1]</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Outputs the 1 byte data; n = 9 to 16 corresponds to bits 0 through 7</td>
<td>I/O unit output</td>
</tr>
<tr>
<td>18</td>
<td>Outputs the 1 byte data; n = 1 to 8 corresponds to bits 0 through 1</td>
<td>I/O unit output</td>
</tr>
<tr>
<td>20</td>
<td>Outputs the 1 word data; n = 1 to 16 corresponds to bits 0 through 15</td>
<td>I/O unit output</td>
</tr>
</tbody>
</table>

990 to 993	Used to generate the following alarm:	
	Alarm No.	
	Displays user alarm codes in the following format:	
	VDOUT[n] = XXXX	
	Here, “n” represents an output variable number for alarm level (A to D).	
	“XXXX” represents user reserve code.	
	Here, XXXX is a decimal number of 0 through 9999, with leading zeros suppressed.	
	Example : VDOUT[992] = 2	
	represents 2395 Alarm B User reserve code 2	
2-1-3. Alarm Message

User designated sub messages for user defined alarms can be displayed on the screen. Sub message designations can be set at system variable VUACM.

VUACM

[Format]

VUACM[n]

n: Subscript expression in the range from 1 to 16.

VUACM[1] = ‘character-string (within 16 characters)’ Describe a character-string between apostrophes.

[Details]

- Once a sub message is set at VUACM, it is displayed at the alarm display line of the screen when a user designated alarm occurs.
- VUACM is cleared by the NC reset operation. If character data is set at VUACM assigned a halfway subscript number while VUACM is cleared, no corresponding display will be available. Just after resetting the NC, VUACM [3] = ‘ABC’.... Subscript number must begin with “1”.
- The allowable subscript range is from “1” to “16” and an alarm occurs if a subscript outside this range is specified.
- Characters exceeding 16 characters are ignored.
- Data at the end: The last data set signals the end of all data.

 VUACM[1] = ‘ABCDEFG’
 VUACM[3] = ‘123’

With the setting indicated above, the display will be “AB123”.

- VUACM[1] = ‘^character-string’
 The symbol “^” (circumflex) at the beginning of the character-string between apostrophes converts upper-case characters into lower-case characters.

 VUACM[1] = ‘^ABCD’

 \[
 \begin{array}{c}
 abcd \\
 \end{array}
 \]

- To insert an apostrophe within a character-string, place two apostrophes in succession.

 VUACM[1] = ‘123’ ‘AB’

 \[
 \begin{array}{c}
 123' AB \\
 \end{array}
 \]

- The symbol “^” and one of the two apostrophes placed in succession are not counted as a character.
2-1-4. Supplements

- VDIN variables can be designed only in the right part of an operation command. If they are specified in the left part, an alarm occurs.

- VDOUT variables can be designated only in the left part of an operation command. If they are specified in the right part, an alarm will occur. Therefore, if reference to a previous output condition is required, output it using another type of variable, such as a local variable or common variable, then access that variable. Numerical values right of the decimal point are rounded.

- If a value greater than the allowable size of individual variables is used in an output variable, an alarm will occur.

 Bit: 0 or 1
 Byte: 0 to 255
 Word: 0 to 65535

- EMPTY is regarded as zero (0).

- Input/output operations are executed with the input/output variables even during the machine lock mode.

- Input and output status is not influenced by NC reset operations. Output signals are cleared by turning the power off and then back on again.

- Output variables are output to the external interface within 25.6 msec. after the execution of the command. This means that two output signals may be output simultaneously if they are designated consecutively.
 VDOUT[1] = 1
 VDOUT[2] = 1

- Do not use system variables while in the cutter radius compensation mode. Cutter radius compensation is executed based on the point data of the three points - actual position, programmed target point, and the next programmed target point. Therefore, the next block after the one to be executed is read in advance. The variable function is executed when the block of commands is read, i.e., before the execution of positioning to the programmed target point. However, this is not always applicable because the buffer reading may be canceled by the parameter setting.
2-1-5. Application Example of Input/Output Variables

Assume that the information concerning the kind of data is output from the CNC to an external device and the corresponding one byte data is input to the CNC from the external device. This input and output process will require the procedure shown below:

The procedure above can be executed by writing sub programs.

Data kind:
- VDOUT[17]

Data reading strobe:
- VDOUT[1]

One byte data from an external device:
- VDIN[17]

Data reading strobe:
- VDIN[1]

Main program:

```
VC1 = 3
CALL O100
VC3 = VC2
```

Subprogram:

```
O100
VDOUT [17] = VC1
G4 F1
VDOUT [1] = 1
G4 F5
IF [VDIN[1] EQ 0] NALM......(*)
VC2 = VDIN[17]
VDOUT [1] = 0
GOTO NEND
NALM VDOUT[992] = 2
NEND RTS
```

Timer: 1 sec.
Timer: 5 sec.

(*): This block of commands generates an alarm if the data reading strobe from an external device is not turned on within 5 seconds.
2-2. Math Functions

Various types of operations using variables are possible. These functions can be programmed in the same way as general calculations.

[Programming format]
Address character, Variables = Expression

The math function of user task 2 supports logical and functional operations in addition to the math functions available with user task 1.

For the math functions of user task 1, refer to “Math Functions”.

2-2-1. Logical Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Math Name</th>
<th>Operation Example</th>
<th>VDOUT [17]</th>
</tr>
</thead>
</table>

* 1: The examples above are for input and output variables.
2: Place a space (indicated by in the table above) before and after the logical operation symbols.
2-2-2. Functions

<table>
<thead>
<tr>
<th>Operation</th>
<th>Math Name</th>
<th>Operation Example</th>
<th>VC1</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIN</td>
<td>Sine</td>
<td>VC1 = SIN[30]</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>COS</td>
<td>Cosine</td>
<td>VC1 = COS[VC2]</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>TAN</td>
<td>Tangent</td>
<td>VC1 = TAN[45]</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATAN</td>
<td>Arc tangent (1)</td>
<td>VC1 = ATAN[1]</td>
<td>45</td>
<td>Value range: −90° to 90°(*4)</td>
</tr>
<tr>
<td>ATAN2</td>
<td>Arc tangent (2)</td>
<td>VC2 = ATAN2[1, −</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>SQRT</td>
<td>Square root</td>
<td>VC1 = SQRT[VC2 + 4]</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ABS</td>
<td>Absolute value</td>
<td>VC1 = ABS[20 − VC2]</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>BIN</td>
<td>Decimal to binary conversion</td>
<td>VC1 = BIN[VDIN[17]]</td>
<td>(*6)</td>
<td>4 bytes</td>
</tr>
<tr>
<td>BCD</td>
<td>Binary to decimal conversion</td>
<td>VDOUT[17] = BCD[VC1]</td>
<td>(*7)</td>
<td>4 bytes</td>
</tr>
<tr>
<td>ROUND</td>
<td>Integer implementation (rounding)</td>
<td>VC1 = ROUND[27.6348]</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>FIX</td>
<td>Integer implementation (truncation)</td>
<td>VC1 = FIX[27.6348]</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>FUP</td>
<td>Integer implementation (raising)</td>
<td>VC1 = FUP[27.6348]</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>DROUND</td>
<td>Unit integer implementation (rounding)</td>
<td>VC1 = DROUND[13.26462]</td>
<td>13.265</td>
<td>(*8)</td>
</tr>
<tr>
<td>DFIX</td>
<td>Unit integer implementation (truncation)</td>
<td>VC1 = DFIX[13.26462]</td>
<td>13.264</td>
<td>(*8)</td>
</tr>
<tr>
<td>DFUP</td>
<td>Unit integer implementation (raising)</td>
<td>VC1 = DFUP[13.26462]</td>
<td>13.265</td>
<td>(*8)</td>
</tr>
<tr>
<td>MOD</td>
<td>Remainder</td>
<td>VC1 = MOD[VC2,7]</td>
<td>4</td>
<td>60 B7 = 8...4</td>
</tr>
</tbody>
</table>

(*1) The variables and numbers after the function operation symbols must be enclosed by '[' and ']'. These are also used for specifying the priority of operation execution order.

(*2) When two elements are specified within the brackets, they must be separated with a comma.

(*3) The VC1 column indicates the value obtained from the operation to its left, when VC2 equals 60.

(*4) Arc tangent (1) (ATAN)
\[\theta = \text{ATAN}[b/a] \]
Arc tangent (2) (ATAN2)
\[\theta = \text{ATAN2}[b,a] \]
(*5) The value of ATAN2[b,a] represents the angle of the point defined by the coordinate values (a,b). Its range is from -180° to 180°.
Example:
\[VC2 = \text{ATAN2}[1, [-\text{START}[3]]] \]

(*6) If the value of VDIN[17] is “01011001” (BCD), the result of operation is VC1 = 59.

(*7) If the value of VC1 is 59, the result is VDOUT[17] = 01011001.

(*8) In this example the setting unit is mm mm. If inches are selected for the setting unit, values will be truncated, rounded up or rounded off to the fourth place to the right of the decimal point.
SECTION 12 SCHEDULE PROGRAMS

1. Overview

Schedule programs permit different types of workpieces to be machined continuously without any operator intervention by using a pallet changer, or other automated loading and unloading units.

- A schedule program specifies the execution order of several main programs.
- A schedule program is a set of the following five blocks. If other blocks are specified, an alarm will occur. The program must end with the END block.
 a) PSELECT block Selects and executes a main program.
 b) GOTO block Branches unconditionally.
 c) IF block Branches conditionally.
 d) VSET block Sets variables.
 e) END block Ends a schedule program.
- These commands must be specified at the start of, or immediately after, the sequence name.
- Although comments specified between ‘(‘ and ‘)’ and continuous lines identified by ‘$’ are valid, optional block skip (/) is invalid.
- The size of programs used in a scheduled operation is restricted according to the selected operation method.
 a) For method A, the total tape length for the main, sub, and library programs is up to the maximum size of operation buffer area which is selected by the specification.
 b) For method B, the tape length of the schedule program must be less than about 5 meters.

For schedule program operations, such as program selection, refer to Schedule Program Function, SECTION 5 Automatic Mode Operation in II OPERATION of Operation Manual. The blocks specified in a schedule program are described below.

2. PSELECT Block

[Function]
A PSELECT block selects and executes main programs for a workpiece to be machined.

- This function searches a specified main program file for a specified main program to be selected as a machining program. This function also searches a specified subprogram file, or system subprogram file, and manufacturer subprogram file for the required subprograms and selects them automatically.
- After the completion of selection, program execution starts if the single block function is “off”, or program execution does not start immediately but is suspended until the cycle start signal is given if the single block function is “on”. The selected programs are executed repeatedly as specified.
- If the system is not in the automatic mode, the selection and execution of a main program are delayed until the system is placed in the automatic mode.

[Programming Format]
The commands must be specified in the following order:
{PSELECT} [fm], [pm], [fs], [:OP], [n] (CR) or (LF)
Commands enclosed by [] may be omitted. Note that a comma "," may also be omitted if the items that follow are all omitted.

(1) fm: Main program file name

```
[ 3 characters ] [ Within 16 characters ] [ . 3 characters ]
```

Device name File name Extension

*: Entries enclosed by [] may be omitted.

- If a device name, a file name, and/or an extension is omitted, entry of "MD1", "A", and "MIN", respectively, are assumed to apply. If all entries for "fm" are omitted, "MD1:A.MIN" is assumed to apply.
- An alarm will occur if "*" or "?" is used in a main program file name.
- An alarm will occur if the specified file does not exist.

(2) pm: Main program name

```
Within 5 characters
```

- If an entry of "fm" is omitted, the program name of the first program in the specified main program file is assumed to apply.
- An alarm will occur if the specified program does not exist in the selected main program file, fm.
- An alarm will occur if M02 or M30, indicating the end of the program, is not specified in the specified main program.

(3) fs: Subprogram file name

```
[ 3 characters ] [ Within 16 characters ] [ . 3 characters ]
```

Device name File name Extension

*: Entries enclosed by [] may be omitted.

- Entry of "fs" may be omitted when:
 a. No subprogram call command is specified in a main program.
 b. The subprogram called from a main program or subprogram exists in MD1:*..SSB (system subprogram) or in MD1:*..MSB (manufacturer subprogram).
 c. Required subprograms other that SSB and MSB are contained in the main program file. If fs is specified, the device name and extension may be omitted. The defaults for the device name and extension are "MD1" and "SUB", respectively. Therefore, if everything is omitted, it is assumed that no file has been specified.
- An alarm will occur if the total number of subprograms used exceeds 126.
- An alarm will occur if “RTS” which means the end of a subprogram is not specified.
• An alarm will occur if the required subprogram name in the range OO000 to OO999 does not exist in the manufacturer subprogram file.
• An alarm will occur if the required subprogram name outside the range OO000 to OO999 does not exist in the “fs” specified file or the system subprogram file.
• An alarm will occur if the file specified by “fs” does not exist.

(4) n: Repetition count

<table>
<thead>
<tr>
<th>Q</th>
<th>Expression</th>
</tr>
</thead>
</table>

Q : Number of repetitions (specified by address)
The setting range is from 1 to 9999 and "1" is assumed to apply if entry of "n" is omitted.
An alarm will occur if a number outside the range 1 to 9999 is specified.

= : Symbol "=" may be used instead of "=". "=" may be omitted if it is directly followed by a numeric value.

(5) OP: Option specifications

a) Specification of S option

; S

This is the command not to search for subprograms.
An S option significantly reduces the time needed to execute the PSELECT command. This option is effective only for main programs and if the subprogram function or the branch function is used, an alarm occurs.
The S option is valid only for operation method B and invalid for method A.
For the difference between a normal tape (method A) and a large capacity tape (method B), with and without the S option specification, refer to Table “Operation Comparison between Normal Storage Capacity Memory and Large Storage Capacity Memory” given later.

b) Specification of A option

; A

The specification of an A option always selects the program running method A independently of the program running method selected in the MAIN PROGRAM SELECT (MEMORY MODE) screen.

c) Specification of B option

; B

The specification of a B option always selects the program running method B independently of the program running method selected in the MAIN PROGRAM SELECT (MEMORY MODE) screen.
- Program requirements in each program running method

<table>
<thead>
<tr>
<th>Item</th>
<th>Program of normal size</th>
<th>Large program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program running method</td>
<td>Method A</td>
<td>Method B</td>
</tr>
<tr>
<td>Program size limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main program</td>
<td>Total program size is limited to the operation buffer capacity. *1</td>
<td>Up to the total size of stored main program</td>
</tr>
<tr>
<td>Sub program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub program function</td>
<td>Usable</td>
<td>Usable</td>
</tr>
<tr>
<td>Branch function</td>
<td>Usable</td>
<td>Usable</td>
</tr>
<tr>
<td>Destination of a jump specified in branch command</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main program</td>
<td>Sequence label only</td>
<td>Sequence label only</td>
</tr>
<tr>
<td>Sub program</td>
<td>Sequence label or sequence number</td>
<td>Sequence label or sequence number</td>
</tr>
<tr>
<td>Library program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main program sequence label limit</td>
<td>Unlimited</td>
<td>Max 30</td>
</tr>
<tr>
<td>Program selection time</td>
<td>*2</td>
<td>*2</td>
</tr>
</tbody>
</table>

*1. Use of extension memory can increase the operation buffer capacity.
*2. Time varies with the selected program size.

3. Branch Block

The branching function of the schedule program, which is identical to SECTION 11, 1-1. “Branch Functions”, falls into GOTO and IF blocks, which provide unconditional branching and conditional branching, respectively.

(1) GOTO Block

[Function]
The GOTO block unconditionally changes program sequences. The destination of a jump is specified using a sequence name immediately after the GOTO command.

[Programming format]
Commands must be specified in the following order:

```
GOTO □ N ______
```

Specifies the destination of a jump

(2) IF Block

[Function]
The IF block conditionally changes program sequences. If the condition is ‘true’, the sequence branches to the destination of a jump. If the condition is ‘false’, it proceeds to the next sequence.

[Programming format]
Commands must be specified in the following order:

\[
\text{IF } \left[\begin{array}{c} \text{Expression} \\ \text{Comparison operator} \\ \text{Expression} \end{array} \right] \text{ N}_____ \\
\text{Specifies the destination of a jump}
\]

The comparison operators include LT (<), LE (\(\leq\)), EQ (=), NE (\(!=\)), GE (\(\geq\)), GT (>). For details, refer to the table in Branch Function in SECTION 11.

4. **Variables Setting Block**

[Function] ‘VSET’ command is used to set variables in a schedule program.

[Programming format] Commands must be specified in the following order:

\[
\text{VSET} \ \ \text{Variable} = \ \ \text{Expression} \ \ \text{Variable} = \ \ \text{Expression}
\]

Variable in the left part: Specify a common, system, or output variable. If other variable is specified in the left part, an alarm will occur.

Right part: An alarm will occur if an output variable is specified.

5. **Schedule Program End Block**

[Function] At the end of a schedule program, an “END” block must always be specified. All blocks specified following the “END” block are invalid.

[Programming format] END
SECTION 13 OTHER FUNCTIONS

1. Table Index Specification

For the additional axis index specification, 5 index specification and 1 index specification are available.
The following explanation assumes that the B-axis is installed as the fourth axis.

1-1. 5-Degree Index Commands

[Programming Format]

B△△△ or B△△△ .
△△△ : Commands can be specified in units of 5 degrees (decimal fractions are rounded off)
and the programmable range is from 0 to 360 degrees.
Note that the unit system for this command does not follow the unit system selected for programming.

[Supplement]

- Commands are executed as absolute even in the incremental mode.
- The direction of rotary table rotation is specified by M15 and M16.
 M15: Forward rotation (CW rotation)
 M16: Reverse rotation (CCW rotation)

Example:
In the illustration below, indexing to face (b) and then indexing back to face (a) is specified by the series of commands indicated below.
M15
B90
M16
B0

- In the G01 mode, a B command should be programmed in a block not containing other axis movement commands. In this case, the B command is executed at a rapid feedrate (G00
mode). In the G00 mode, it can be programmed with other axis movement commands in the same block.

1-2. 1-Degree Index Commands

[Programming Format]

B△△△ or _B △△△_.
△△△: Commands can be specified in units of 1 degrees (decimal fractions are rounded off) and the programmable range is from 0 to 360 degrees. Note that the unit system for this command does not follow the unit system selected for programming.

[Details]

- Commands are executed as absolute even in the incremental mode.
- The direction of rotary table rotation is specified by M15 and M16.
 - M15: Forward rotation (CW rotation)
 - M16: Reverse rotation (CCW rotation)

Example:
In the illustration below, indexing face (b) and then indexing back to face (a) is specified by the series of commands indicated below.

M15
B90
M16
B0

- In the G01 mode, a B command should be programmed in a block not containing other axis movement commands. In this case, the B command is executed at a rapid feedrate (G00
mode). In the G00 mode, it can be programmed with other axis movement commands in the same block.

Example: Moving the B-axis in a fixed cycle mode

N.....G81 G56 X...Y...Z...F...H...M52
N.....B60 X50 M15
N.....X0 M52
N.....B90
N.....X0 M52
1-3. **0.001 Degree Commands (Optional)**

With the 0.001° command specification, selection is possible whether the axis is treated as a rotary axis which allows the designation for operation within the range up to 360 degrees, or treated similarly to a linear axis (multi-turn axis) for which the operation range is not restricted.

1-3-1. **Rotary Axis Command**

[Programming Format]

B△△△.△△△ or B△△△△△△

0.001° (0.0001°) unit: \(-360.000 \leq B \leq 360.000\) \((-360.0000 \leq B \leq 360.0000\))

The unit system conforms to the setting at LENGTH and ANGLE of NC optional parameter (INPUT UNIT SYSTEM).

Programming is possible in units of 0.001°, 0.0001°, or 1°.

[Details]

- The direction of rotary table rotation is specified by M15 and M16.
 - M15: Forward rotation (CW rotation)
 - M16: Reverse rotation (CCW rotation)
 - In the incremental mode, direction of table rotation is determined as indicated below.
 - Positive command value: Forward rotation (CW rotation)
 - Negative command value: Reverse rotation (CCW rotation)

- As with linear axes (X, Y, and Z), cutting feed in the G01 mode and also linear interpolation designation with the combination of a linear axis are possible.
 - In this operation, however, the following must be taken into consideration for determining feedrate.
 - In a block where only a B-axis command is specified, F100 means “100 deg/min”. However, if a B-axis command is specified with other axis commands in the same block, F100 is interpreted as “100 mm/min” or “100 inch/min”.

 - Example 1:

 Assuming “r” in the figure at the left to be 100 mm, the B-axis rotates at a rate of 100 deg/min when “G91 G01 B100 F100” are programmed.

 The actual cutting speed (surface speed on a workpiece at a cutting point) is:

 \[
 100 \times 2 \times 3.14 \times \frac{100}{360} = 174 \text{ mm/min}
 \]

 - Example 2:
If "G91 G01 B360 Z-50 F100" is specified.

The axis movement distance is calculated as:
\[\sqrt{(360)^2 + (-50)^2} = 363.456 \text{ mm} \]
The feedrate is 100 mm/min.
The time required for the axes to move the programmed distance is:
\[\frac{363.456}{100} = 3.6 \text{ min} \]

1-3-2. Multi-turn Command

[Programming Format]

\[B\Delta\Delta\Delta\\Delta\Delta \text{ or } B\Delta\Delta\Delta\Delta\ \]

0.001° (0.0001°) unit: \(-9999.999 \leq B \leq 9999.999\) \((-9999.9999 \leq B \leq 9999.9999)\)
The unit system conforms to the setting at LENGTH and ANGLE of NC optional parameter (INPUT UNIT SYSTEM).
Programming is possible in units of 0.001°, 0.0001°, or 1°.

[Details]

- The direction of rotation is determined according to the relative position of the target point with respect to the actual position regardless of the dimensioning mode (absolute or incremental). When the target point is located in the direction in which coordinate values increase with respect to the actual position, the axis rotates in the forward direction. If it is in the direction in which coordinate values decrease, the axis rotates in the reverse direction. Designation of M15/M16 is ignored.
- Travel limits (P/N) are fixed.
 Travel limit (P): 9720.000 (9720.0000)
 Travel limit (N): \(-9720.000 \) (\(-9720.0000)\)
- Whether the coordinate value of the actual position is updated to a value within the range of 0 to 359.999 degrees when the NC is reset is determined according to the setting at Rounding PROCESSING IS CARRIED OUT WHEN CONTROL IS SET of a rotary axis parameter.
2. **ANGULAR COMMANDS**

[Function]
An angular command allows a target point to be defined by a coordinate value of one axis in the specified plane and the angle a line makes with the horizontal axis.

[Programming Format]

\[\text{AG} = \triangle \triangle \\Delta \triangle \Delta \]
\[\triangle \triangle \Delta : \text{Angle (unit: degree)} \]

The unit of an angle command can be changed by the setting at LENGTH and ANGLE of NC optional parameter (INPUT UNIT SYSTEM).
It is possible to specify a negative value.

- In the XY plane

\[
\text{N1 G00 X100 Y100} \quad \text{This is equivalent to the commands}
\]
\[
\text{N2 G01 X200 AG = 30} \quad ^{\text{N2 G01 X200 Y157.735}}.\]

[Supplement]
If an angular command is used to define a point, do not specify both axes of the specified plane. Specify only one axis.
3. MANUAL SHIFT AMOUNT CANCEL COMMAND

[Function]
The manual shift amount cancel command cancels the total distance moved in manual intervention during automatic operation by a command in the program without using switches on the operation panel. The manual shift amount cancel function updates the coordinate values without actually moving the axes.

[Programming Format]
MITCAN

There are following two programming patterns. Note that a block skip command may be specified.
- Without a sequence number (label)
 MITCAN
- With a sequence number (label)
 N***MITCAN

Operation
(1) When the manual shift amount cancel command (MITCAN) is executed, the manual shift amount is canceled and the actual position data of the machine are taken as the calculated value. In this processing, no actual axis movement takes place.

- Example:

 Before canceling manual shift amount
 \[
 100.0 + 500.0 = 600.0
 \]
 (Manual shift amount) (Calculated value) (Actual position data)

 After canceling manual shift amount
 \[
 0.0 + 600.0 = 600.0
 \]
 (Manual shift amount) (Calculated value) (Actual position data)

(2) If an axis movement command is specified in the incremental mode (G91) immediately after canceling the manual shift amount, it is executed as an incremental value with respect to the previously specified command.

- Example 1: Assume that manual shift amount is X = 50, Y = 50, and Z = 0.

N100 G90 G0 X400 Y300 Z0
N101 MITCAN
N102 G91 X20
N103 Y10

- Axis movements

N100 / N101 \((X, Y, Z) = (450, 350, 0) \)
N102 \((X, Y, Z) = (420, 350, 0) \)
N103 \((X, Y, Z) = (420, 310, 0) \)
Operations

<table>
<thead>
<tr>
<th>N100</th>
<th>Positioning is performed to ((X, Y, Z) = (450, 350, 0)) in the work coordinate system. Command value and calculated value are both ((X, Y, Z) = (400, 300, 0)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>N101</td>
<td>Calculated value is updated to ((X, Y, Z) = (450, 350, 0)).</td>
</tr>
<tr>
<td>N102</td>
<td>Positioning is performed to ((X, Y, Z) = (420, 350, 0)) in the work coordinate system. Command value is ((X, Y, Z) = (420, 300, 0)). Calculated value is ((X, Y, Z) = (420, 350, 0)).</td>
</tr>
<tr>
<td>N103</td>
<td>Positioning is performed to ((X, Y, Z) = (420, 310, 0)) in the work coordinate system. Command value is ((X, Y, Z) = (420, 310, 0)). Calculated value is ((X, Y, Z) = (420, 310, 0)).</td>
</tr>
</tbody>
</table>

Positioning is performed to the position where the manual shift amount is added to the calculated value. That is, the axes move from the previous calculated position according to the specified command with the manual shift amount added to the command value.

Example 2: Assume that

- Manual shift amount is \(X = 50, Y = 50,\) and \(Z = 0\).
- Tool change position is \(X = 700, Y = 0, Z = 0\)

```
N100 G90 G0 X400 Y300 Z0
N101 M06
N102 MITCAN
N103 G91 X20 Y10
```

Axis movements

```
N100 \((X, Y, Z) = (450, 350, 0)\)
N101 / N102 \((X, Y, Z) = (700, 0, 0)\)
N103 \((X, Y, Z) = (420, 310, 0)\)
```

Operations

<table>
<thead>
<tr>
<th>N100</th>
<th>Positioning is performed to ((X, Y, Z) = (450, 350, 0)) in the work coordinate system. Command value and calculated value are both ((X, Y, Z) = (400, 300, 0)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>N101</td>
<td>Positioning is performed to the tool change position ((X, Y, Z) = (700, 0, 0)). Command value is ((X, Y, Z) = (400, 300, 0)). Calculated value is ((X, Y, Z) = (650, -50, 0)).</td>
</tr>
<tr>
<td>N102</td>
<td>Calculated value is updated to ((X, Y, Z) = (700, 0, 0)).</td>
</tr>
<tr>
<td>N103</td>
<td>Positioning is performed to ((X, Y, Z) = (420, 310, 0)) in the work coordinate system. Command value is ((X, Y, Z) = (420, 310, 0)). Calculated value is ((X, Y, Z) = (420, 310, 0)).</td>
</tr>
</tbody>
</table>

[Details]

- An alarm occurs if the manual shift amount cancel command (MICAN) is executed in the cutter radius compensation mode or the 3D offset mode.
- Before executing sequence re-start, the manual shift amount must be canceled. Note that manual shift amount cannot be canceled if the MITCAN command is specified in the block in sequence restart operation or the block for sequence restart.
• Only the sequence number (sequence label) and the block skip command can be specified before the MITCAN command.

• The MITCAN command must be specified without other commands in the same block.

Example:

```
N100  MITCAN   X100   Y0
       These commands are disregarded.
```
SECTION 14 FILE MANAGEMENT

1. Files

(1) Programs are executed after they have been stored in the NC memory.

(2) The memory in the control has a capability to store 320m (1050 ft.) to 10240m (3360 ft.) of punched tape data. Therefore, several programs can be stored in the memory at the same time.

(3) To facilitate the handling of stored programs, each is stored in respective files with different names. This is similar to keeping documents in files in lockers or cabinets. The following figure shows the image of file management system.

(4) The file management system is composed of the following three kinds:
 - Memory (data bank)
 This corresponds to a locker or cabinet where data is stored in units of files.
 - Various files
 Each file consists of documents or account books.
 - Program name or number
 Program numbers or names correspond to individual documents. (process sheet)
2. Various Files

Files may be equivalent to document files or account books, and each file for the same workpiece type is assigned a name (file name), which consists of the main file name and an extension. A file name should consist of up to 16 alphanumeric characters including a minus code, beginning with an alphabetical character. An extension should consist of 3 characters beginning with an alphabetical character, separated from a main file name by a period(.) between them.

Types of files:
- Main program file: [Main file name]. MIN
- Subprogram file: [Main file name]. SUB
- System subprogram file: [Main file name]. SSB
- Maker subprogram file: [Main file name]. MSB
- Library program file: [Main file name]. LIB
- Schedule program file: [Main file name]. SDF

(1) Main program file
This is a file which basically files main programs.
The main program file can be used to register subprograms which are called from the main program filed in it.
Example:

(2) Subprogram file
This is a file of subprograms.
When a machining cycle is to be carried out with the programs in this file, it is necessary to specify the subprogram name in selecting programs.

(3) System subprogram file
Sub programs, when they are called and used, must always be specified by program selection. When using a subprogram in the system sub program, however, it is not necessary to to specify the subprogram by program selection

(4) Maker subprogram file
This file is handled in the same manner as a system subprogram file. In this file, subprograms made by the machine tool builder for such automating are filed.

(5) Library program file
Generally, for the use of a subprogram in the MDI mode operation entering the desired subprogram number such as CALL O100, the main program which called this subprogram must be selected in advance.
By filing the subprograms which are often called in the MDI mode operation in the library program file, they can be easily called.

(6) Schedule program file
Schedule program automatically executes machining of different kinds of workpieces successively using the pallet changer or other automation devices without the help of setup change by the operator. In this schedule program, you can specify the execution order of several main programs.
1. G Code Table

<table>
<thead>
<tr>
<th>G Code</th>
<th>G Group</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>G00 ***</td>
<td>1</td>
<td>Positioning</td>
</tr>
<tr>
<td>G01 ***</td>
<td>1</td>
<td>Linear interpolation</td>
</tr>
<tr>
<td>G02</td>
<td>1</td>
<td>Circular interpolation - Helical cutting (CW)</td>
</tr>
<tr>
<td>G03</td>
<td>1</td>
<td>Circular interpolation - Helical Cutting (CCW)</td>
</tr>
<tr>
<td>G04 **</td>
<td>2</td>
<td>Dwell</td>
</tr>
<tr>
<td>G05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G09 **</td>
<td>18</td>
<td>Exact stop</td>
</tr>
<tr>
<td>G10 *</td>
<td>3</td>
<td>Cancel of G11</td>
</tr>
<tr>
<td>G11</td>
<td>3</td>
<td>Parallel and rotational shift of coordinate system</td>
</tr>
<tr>
<td>G12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G15</td>
<td>4</td>
<td>Selection of work coordinate system (Modal)</td>
</tr>
<tr>
<td>G16 **</td>
<td>4</td>
<td>Selection of work coordinate system (One-shot)</td>
</tr>
<tr>
<td>G17 ***</td>
<td>5</td>
<td>Plane selection: XY</td>
</tr>
<tr>
<td>G18 ***</td>
<td>5</td>
<td>Plane selection: ZX</td>
</tr>
<tr>
<td>G19 ***</td>
<td>5</td>
<td>Plane selection: YZ</td>
</tr>
<tr>
<td>G20 **</td>
<td>15</td>
<td>Inch input confirmation</td>
</tr>
<tr>
<td>G21 **</td>
<td>15</td>
<td>Metric input confirmation</td>
</tr>
<tr>
<td>G22 ***</td>
<td>6</td>
<td>Programmable stroke limit ON</td>
</tr>
<tr>
<td>G23 ***</td>
<td>6</td>
<td>Programmable stroke limit cancel</td>
</tr>
<tr>
<td>G24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G30 **</td>
<td>16</td>
<td>Positioning to home position</td>
</tr>
<tr>
<td>G31</td>
<td>17</td>
<td>Skip function</td>
</tr>
<tr>
<td>G Code</td>
<td>G Group</td>
<td>Functions</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>G32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G40 *</td>
<td>7</td>
<td>Cutter radius compensation cancel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cutter radius compensation, left</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cutter radius compensation, right</td>
</tr>
<tr>
<td>G43 *</td>
<td>8</td>
<td>3D offset cancel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3D offset ON</td>
</tr>
<tr>
<td>G45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G50 *</td>
<td>9</td>
<td>Enlargement and reduction of geometry cancel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enlargement and reduction of geometry ON</td>
</tr>
<tr>
<td>G51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G53 ***</td>
<td></td>
<td>Tool length offset cancel</td>
</tr>
<tr>
<td>G54</td>
<td></td>
<td>Tool length offset, X-axis</td>
</tr>
<tr>
<td>G55</td>
<td></td>
<td>Tool length offset, Y-axis</td>
</tr>
<tr>
<td>G56 ***</td>
<td>10</td>
<td>Tool length offset, Z-axis</td>
</tr>
<tr>
<td>G57</td>
<td></td>
<td>Tool length offset, 4th-axis</td>
</tr>
<tr>
<td>G58</td>
<td></td>
<td>Tool length offset, 5th-axis</td>
</tr>
<tr>
<td>G59</td>
<td></td>
<td>Tool length offset, 6th-axis</td>
</tr>
<tr>
<td>G60</td>
<td>1</td>
<td>One-directional positioning</td>
</tr>
<tr>
<td>G61</td>
<td>14</td>
<td>Exact stop mode</td>
</tr>
<tr>
<td>G62</td>
<td>19</td>
<td>Programmable mirror image</td>
</tr>
<tr>
<td>G63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G64 *</td>
<td>14</td>
<td>Cutting mode (Cancel of G61)</td>
</tr>
<tr>
<td>G65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G71</td>
<td>21</td>
<td>Designation of return level for M53</td>
</tr>
<tr>
<td>G72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G73</td>
<td>11</td>
<td>Fixed cycle, High speed deep hole drilling cycle</td>
</tr>
<tr>
<td>G74</td>
<td></td>
<td>Fixed cycle, Reverse tapping cycle</td>
</tr>
<tr>
<td>G75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G Code</td>
<td>G Group</td>
<td>Functions</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>G76</td>
<td>11</td>
<td>Fixed cycle, Fine boring</td>
</tr>
<tr>
<td>G77</td>
<td>G78 G79</td>
<td></td>
</tr>
<tr>
<td>G80 *</td>
<td>11</td>
<td>Fixed cycle, Modal cancel</td>
</tr>
<tr>
<td>G81</td>
<td>G82</td>
<td>Fixed cycle, Drilling cycle</td>
</tr>
<tr>
<td>G83</td>
<td>11</td>
<td>Fixed cycle, Deep hole drilling cycle</td>
</tr>
<tr>
<td>G84</td>
<td>G85</td>
<td>Fixed cycle, Tapping cycle</td>
</tr>
<tr>
<td>G86</td>
<td>G87</td>
<td>Fixed cycle, Boring cycle</td>
</tr>
<tr>
<td>G88</td>
<td></td>
<td>Fixed cycle, Back boring cycle</td>
</tr>
<tr>
<td>G89</td>
<td>11</td>
<td>Fixed cycle, Boring cycle</td>
</tr>
<tr>
<td>G90 ***</td>
<td>12</td>
<td>Absolute dimensioning mode</td>
</tr>
<tr>
<td>G91 ***</td>
<td></td>
<td>Incremental dimensioning mode</td>
</tr>
<tr>
<td>G92</td>
<td>20</td>
<td>Setting of work coordinate system</td>
</tr>
<tr>
<td>G93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G94 ***</td>
<td>13</td>
<td>Feed per minute mode</td>
</tr>
<tr>
<td>G95 ***</td>
<td></td>
<td>Feed per revolution mode</td>
</tr>
<tr>
<td>G96 G97 G98 G99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
G Code G Group Functions

<table>
<thead>
<tr>
<th>G Code</th>
<th>G Group</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>G174</td>
<td>78</td>
<td>Cylindrical side cutting OFF</td>
</tr>
<tr>
<td>G175</td>
<td></td>
<td>Cylindrical side cutting ON</td>
</tr>
<tr>
<td>G186</td>
<td>66</td>
<td>Tolerance control OFF</td>
</tr>
<tr>
<td>G187</td>
<td></td>
<td>Tolerance control ON</td>
</tr>
<tr>
<td>G274</td>
<td>11</td>
<td>Synchronized tapping, Reverse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tapping cycle</td>
</tr>
<tr>
<td>G284</td>
<td>11</td>
<td>Synchronized tapping, Tapping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cycle</td>
</tr>
</tbody>
</table>

* : Has already been set when power supply is turned on.
** : Valid only in the specified block.
*** : May be set by an initial condition parameter.
2. Table of Mnemonic Codes

<table>
<thead>
<tr>
<th>Mnemonic Code</th>
<th>Group</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOEX</td>
<td>34</td>
<td>Specifies the sequence that is only read and not executed.</td>
</tr>
<tr>
<td>CALL</td>
<td>27</td>
<td>Subprogram, Simple call</td>
</tr>
<tr>
<td>RTS</td>
<td></td>
<td>Subprogram, End code</td>
</tr>
<tr>
<td>MODIN</td>
<td></td>
<td>Subprogram, Call after positioning mode ON</td>
</tr>
<tr>
<td>MOOUT</td>
<td></td>
<td>Subprogram, Call after positioning mode OFF</td>
</tr>
<tr>
<td>GOTO</td>
<td>28</td>
<td>Branch command, Unconditional jump</td>
</tr>
<tr>
<td>IF</td>
<td></td>
<td>Branch command, Conditional jump (6 kinds)</td>
</tr>
<tr>
<td>RTMCR</td>
<td></td>
<td>Macro processing end code (used only in the system)</td>
</tr>
<tr>
<td>RTMDI</td>
<td></td>
<td>MDI processing end code (used only in the system)</td>
</tr>
<tr>
<td>OMIT</td>
<td>29</td>
<td>Coordinate calculation function, Omit</td>
</tr>
<tr>
<td>RSTRT</td>
<td></td>
<td>Coordinate calculation function, Restart</td>
</tr>
<tr>
<td>LAA</td>
<td>30</td>
<td>Coordinate calculation function, Line at angle</td>
</tr>
<tr>
<td>ARC</td>
<td></td>
<td>Coordinate calculation function, Arc</td>
</tr>
<tr>
<td>GRDX</td>
<td></td>
<td>Coordinate calculation function, Grid X</td>
</tr>
<tr>
<td>GRDY</td>
<td></td>
<td>Coordinate calculation function, Grid Y</td>
</tr>
<tr>
<td>DGRDX</td>
<td>31</td>
<td>Coordinate calculation function, Double-grid X</td>
</tr>
<tr>
<td>DGRDY</td>
<td></td>
<td>Coordinate calculation function, Double-grid Y</td>
</tr>
<tr>
<td>SQRX</td>
<td></td>
<td>Coordinate calculation function, Square X</td>
</tr>
<tr>
<td>SQRY</td>
<td></td>
<td>Coordinate calculation function, Square Y</td>
</tr>
<tr>
<td>BHC</td>
<td></td>
<td>Coordinate calculation function, Bolt hole circle</td>
</tr>
<tr>
<td>FMILR</td>
<td>31</td>
<td>Area machining, Face milling (Rough)</td>
</tr>
<tr>
<td>FMILF</td>
<td></td>
<td>Area machining, Face milling (Finish)</td>
</tr>
<tr>
<td>PMIL</td>
<td></td>
<td>Area machining, Pocket milling (Zigzag)</td>
</tr>
<tr>
<td>PMILR</td>
<td></td>
<td>Area machining, Pocket milling (Spiral)</td>
</tr>
<tr>
<td>RMILO</td>
<td></td>
<td>Area machining, Round milling (Out)</td>
</tr>
<tr>
<td>RMILI</td>
<td></td>
<td>Area machining, Round milling (In)</td>
</tr>
<tr>
<td>MSG</td>
<td>35</td>
<td>Message display</td>
</tr>
<tr>
<td>NMSG</td>
<td></td>
<td>Restoring original display</td>
</tr>
<tr>
<td>NCYL</td>
<td>36</td>
<td>Fixed cycle, No cycle axis movement</td>
</tr>
<tr>
<td>COPY</td>
<td>39</td>
<td>Copy, Initial value of parallel shift/rotation of local coordinate system</td>
</tr>
<tr>
<td>COPYE</td>
<td></td>
<td>Copy, Incremental value of parallel shift/rotation of local coordinate system</td>
</tr>
<tr>
<td>CHFC</td>
<td></td>
<td>Arbitrary-angle chamfering (Chamfering)</td>
</tr>
<tr>
<td>CHFR</td>
<td></td>
<td>Arbitrary-angle chamfering (Rounding)</td>
</tr>
</tbody>
</table>
3. M Code Table

<table>
<thead>
<tr>
<th>M Code</th>
<th>Group</th>
<th>Function</th>
<th>Execution Timing (In Reference to Axis Movement Command)</th>
<th>Modal/One shot</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>M00</td>
<td>01</td>
<td>Program stop</td>
<td>After</td>
<td>One shot</td>
<td>Spindle and coolant stop (Can be selected by parameter setting)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optional stop</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>End of program</td>
<td>After</td>
<td>One shot</td>
<td>NC reset</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>Work spindle start (CW)</td>
<td>At the same time</td>
<td>Modal</td>
<td>Rotates the work spindle counterclockwise when viewed from the workpiece.</td>
</tr>
<tr>
<td></td>
<td>04</td>
<td>Work spindle start (CCW)</td>
<td>At the same time</td>
<td>Modal</td>
<td>Rotates the work spindle clockwise when viewed from the workpiece.</td>
</tr>
<tr>
<td></td>
<td>05</td>
<td>Spindle stop</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06</td>
<td>Vertical spindle tool change</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>Oil mist coolant ON</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08</td>
<td>Coolant pump ON</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>09</td>
<td>Coolant system OFF (M07, 08, 12, 50, 51, 59 OFF)</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>A-axis clamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>A-axis unclamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Chip air blow ON</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4th-axis rotary index table CW</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4th-axis rotary index table CCW</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Indexing head index CCW</td>
<td>At the same time</td>
<td>One shot</td>
<td>Command effective for only M73-M76</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Spindle orientation (forward)</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>B-axis clamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>B-axis unclamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Y-axis clamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Y-axis unclamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>Z-axis clamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Z-axis unclamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>C-axis clamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>C-axis unclamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>End of tape</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>Splash guard door close</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>Splash guard door open</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>M Code</td>
<td>Group</td>
<td>Function</td>
<td>Execution Timing (In Reference to Axis Movement Command)</td>
<td>Modal/One shot</td>
<td>Remarks</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--</td>
<td>--</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>40</td>
<td>11</td>
<td>High/middle-high/middle-low/low range</td>
<td>At the same time</td>
<td>Modal</td>
<td>Spindle gears are automatically determined by spindle speed command.</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>High/middle-high/middle-low range</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>High/middle-high range</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>High range</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>AAC (F) 1 Next attachment clear</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>AAC (F) 1 Preparation for attachment change preparation</td>
<td>At the same time</td>
<td>One shot</td>
<td>F: Floor type T: Table type</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>AAC (F) 1 No next attachment</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>AAC (F) 1 No next attachment</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>38</td>
<td>AAC (T) Next attachment clear</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>AAC (T) Preparation for attachment change preparation</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>23</td>
<td>Through-the-tool coolant, low pressure ON</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>Through-the-tool coolant, high pressure ON</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>12</td>
<td>Return level in fixed cycle, Upper limit</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>13</td>
<td>Return level in fixed cycle, Specified level</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>Return level in fixed cycle, Point R level</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>34</td>
<td>W-axis clamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>W-axis unclamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>25</td>
<td>Chip air blow ON</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4</td>
<td>Pallet change command</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>Vertical spindle tool change preparation</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>21</td>
<td>No next tool for ATC</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>Next tool return cycle</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>ATC preparation</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>14</td>
<td>Continuous tool change between the vertical and horizontal spindles (same tool)</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>Continuous tool change between the vertical and horizontal spindles (different tool)</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>Vertical spindle tool clamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>Vertical spindle tool unclamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>3</td>
<td>Manual tool change</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>M Code</td>
<td>Group</td>
<td>Function</td>
<td>Execution Timing (In Reference to Axis Movement Command)</td>
<td>Modal/One shot</td>
<td>Remarks</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--</td>
<td>---</td>
<td>----------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>Manual attachment tool change</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>Horizontal spindle tool change preparation</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>15</td>
<td>Swivel head, front position</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>Swivel head, left position</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>Swivel head, rear position</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>Swivel head, right position</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>3</td>
<td>Horizontal spindle tool change</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>Horizontal spindle tool clamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>Horizontal spindle tool unclamp</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>27</td>
<td>Automatic W-axis positioning 1</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td>Automatic W-axis positioning 2</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td>Automatic W-axis positioning 3</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td>Automatic W-axis positioning 4</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>Automatic W-axis positioning 5</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
<td>Oil mist/air blow ON</td>
<td>At the same time</td>
<td>One shot</td>
<td>Valid for M90, 91 and 98</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td>Dust collector ON</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td>Dust collector OFF</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>Vertical spindle oil mist cycle mode ON</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td>Tap-drill hole chip air blow cycle mode ON</td>
<td>At the same time</td>
<td>Modal</td>
<td>Turned OFF by M90</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>Horizontal spindle oil mist cycle mode ON</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>4</td>
<td>Pallet 1 selection</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>Pallet 2 selection</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>Pallet 3 selection</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>Pallet 4 selection</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>Pallet 5 selection</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>Pallet 6 selection</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td></td>
<td>Pallet 7 selection</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
<td>Pallet 8 selection</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>Pallet 9 selection</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>Pallet 10 selection</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td>Pallet 11 selection</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td>Pallet 12 selection</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>6</td>
<td>5th-axis rotary table CW</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>5th-axis rotary table CCW</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td></td>
<td>Spindle orientation (reverse)</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td></td>
<td>Spindle orientation (forward/reverse)</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>Work shower ON</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>M Code</td>
<td>Group</td>
<td>Function</td>
<td>Execution Timing (In Reference to Axis Movement Command)</td>
<td>Modal/One shot</td>
<td>Remarks</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>---</td>
<td>--</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>130</td>
<td>9</td>
<td>Spindle rotation condition for cutting feed OFF</td>
<td>At the same time</td>
<td>Modal</td>
<td>Cutting feed (G01, G02, G03) is enabled if the spindle is rotating.</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td>Spindle rotation condition for cutting feed ON</td>
<td>At the same time</td>
<td>Modal</td>
<td>Cutting feed (G01, G02, G03) is disabled if the spindle is not rotating.</td>
</tr>
<tr>
<td>132</td>
<td>37</td>
<td>Single block invalid</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td></td>
<td>Single block valid</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>16</td>
<td>Spindle speed override invalid</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>Spindle speed override valid</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>17</td>
<td>Feedrate override invalid</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
<td>Feedrate override valid</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>39</td>
<td>Slide hold invalid</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td></td>
<td>Slide hold valid</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td></td>
<td>Spindle overload detection invalid</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td></td>
<td>Spindle overload detection valid</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>19</td>
<td>Touch sensor advance</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Touch sensor retract</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>28</td>
<td>Coolant group specification, Vertical spindle</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>Coolant group specification, Horizontal spindle</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td></td>
<td>Coolant group specification, 3rd group</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td></td>
<td>Coolant group specification, 4th group</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>20</td>
<td>Sensor air blow OFF</td>
<td>After</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td>Sensor air blow ON</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td></td>
<td>AAC (2 st.), No next tool</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td></td>
<td>AAC (2 st.), Next tool clear</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td></td>
<td>AAC (2 st.), Preparation for the next tool</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>4</td>
<td>PPC pallet loading</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td></td>
<td>PPC pallet unloading</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td></td>
<td>Long tool, No next tool</td>
<td>At the same time</td>
<td>One shot</td>
<td>Specification of the safety cover for the next tool</td>
</tr>
<tr>
<td>165</td>
<td></td>
<td>Long tool, Preparation for tool change</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td></td>
<td>ATC active tool return mode specification</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>M Code</td>
<td>Group</td>
<td>Function</td>
<td>Execution Timing (In Reference to Axis Movement Command)</td>
<td>Modal/One shot</td>
<td>Remarks</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>--</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>170</td>
<td>3</td>
<td>AAC (F), Attachment change</td>
<td>After</td>
<td>One shot</td>
<td>F: Floor type</td>
</tr>
<tr>
<td>171</td>
<td>3</td>
<td>AAC (T), Attachment change</td>
<td>After</td>
<td>One shot</td>
<td>T: Table type</td>
</tr>
<tr>
<td>172</td>
<td>3</td>
<td>Long tool, Tool change command</td>
<td>After</td>
<td>One shot</td>
<td>Column type</td>
</tr>
<tr>
<td>173</td>
<td>3</td>
<td>AAC (2 st.), Attachment change command</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>3</td>
<td>Dust collection mode, Air blow</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>3</td>
<td>Angular attachment, Tool change</td>
<td>After</td>
<td>One shot</td>
<td>AT-ATC</td>
</tr>
<tr>
<td>178</td>
<td>4</td>
<td>Dust collection mode, ON</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>4</td>
<td>Dust collection mode, OFF</td>
<td>At the same time</td>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>38</td>
<td>External M signal</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>38</td>
<td>External M signal</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>38</td>
<td>External M signal</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>38</td>
<td>External M signal</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>38</td>
<td>External M signal</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>38</td>
<td>External M signal</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>38</td>
<td>External M signal</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>38</td>
<td>External M signal</td>
<td>At the same time</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>4</td>
<td>Automatic W-axis positioning 1</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>4</td>
<td>Automatic W-axis positioning 2</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>4</td>
<td>Automatic W-axis positioning 3</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>4</td>
<td>Automatic W-axis positioning 4</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>4</td>
<td>Automatic W-axis positioning 5</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>4</td>
<td>Automatic W-axis positioning 6</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>4</td>
<td>Automatic W-axis positioning 7</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>4</td>
<td>Automatic W-axis positioning 8</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>4</td>
<td>Automatic W-axis positioning 9</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>4</td>
<td>Automatic W-axis positioning 10</td>
<td>After</td>
<td>One shot</td>
<td></td>
</tr>
</tbody>
</table>

When "1" is set for machine user parameter (bit) No. 3, bit 1, an external M signal is output after the completion of axis movement.

For automatic W-axis positioning 10-level specification
The commanded state of the following M codes may be displayed in the M code field (BLOCK).

- M03, 04, 05, 19
- M06, 77
- M07
- M10, 11
- M15, 16
- M17
- M20, 21
- M22, 23
- M24, 25
- M40 - 43
- M53, 54
- M57, 58
- M63, 64, 65
- M73 - 76
- M81 - 85
- M60, 101 - 112, 160, 161
- M115, 116
- M130, 131
- M132, 133
- M134, 135
- M136, 137
- M138, 139
- M140, 141
- M150 - 153
- M08
- M12
- M13, 14, 18, 32 - 37, 48, 49, 181 - 185
- M26, 27
- M30
- M50, 51
- M52
- M59
- M66, 67
- M144, 145
- M154, 155
- M201 - 210
- M254

Note: In the M code column, modal state of up to 26 M codes is displayed.
4. Table of Reserved Local Variable Words

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>DGRDX</td>
<td>GRDY</td>
<td>NOT</td>
<td>RTMDI</td>
</tr>
<tr>
<td>AND</td>
<td>DGRDY</td>
<td>GRER</td>
<td>OR</td>
<td>RTI</td>
</tr>
<tr>
<td>AG</td>
<td>DIN</td>
<td>GROF</td>
<td>PCIR</td>
<td>RTS</td>
</tr>
<tr>
<td>ARC</td>
<td>DRAW</td>
<td>GRON</td>
<td>PMIL</td>
<td>SAVE</td>
</tr>
<tr>
<td>ATAN</td>
<td>DROUND</td>
<td>GRSK</td>
<td>PMILR</td>
<td>SIN</td>
</tr>
<tr>
<td>ATAN2</td>
<td>EIN</td>
<td>GRST</td>
<td>PRINT</td>
<td>SPRINT</td>
</tr>
<tr>
<td>BCD</td>
<td>EMPTY</td>
<td>GT</td>
<td>RCIRI</td>
<td>SQRT</td>
</tr>
<tr>
<td>BHC</td>
<td>EQ</td>
<td>HA</td>
<td>RCIRO</td>
<td>SQRX</td>
</tr>
<tr>
<td>BIN</td>
<td>EOR</td>
<td>HB</td>
<td>RMILO</td>
<td>SQRY</td>
</tr>
<tr>
<td>CALL</td>
<td>FA</td>
<td>HC</td>
<td>RMILO</td>
<td>TAN</td>
</tr>
<tr>
<td>CLEAR</td>
<td>FB</td>
<td>IF</td>
<td>RH</td>
<td>TLCO</td>
</tr>
<tr>
<td>COPY</td>
<td>FC</td>
<td>LAA</td>
<td>ROUND</td>
<td>TLFR</td>
</tr>
<tr>
<td>COPYE</td>
<td>FIX</td>
<td>LE</td>
<td>RP</td>
<td>TLFOFF</td>
</tr>
<tr>
<td>COS</td>
<td>FMILF</td>
<td>LPRINT</td>
<td>RQNFL</td>
<td>TLFON</td>
</tr>
<tr>
<td>DA</td>
<td>FMILR</td>
<td>LT</td>
<td>RS</td>
<td>TLOK</td>
</tr>
<tr>
<td>DB</td>
<td>FUP</td>
<td>MITCAN</td>
<td>RSQCO</td>
<td>TN</td>
</tr>
<tr>
<td>DC</td>
<td>GE</td>
<td>MOD</td>
<td>RSQRI</td>
<td></td>
</tr>
<tr>
<td>DEF</td>
<td>GOTO</td>
<td>MODIN</td>
<td>RSQRO</td>
<td></td>
</tr>
<tr>
<td>DELETE</td>
<td>GRCI</td>
<td>MODOUT</td>
<td>RSTRT</td>
<td></td>
</tr>
<tr>
<td>DFIX</td>
<td>GRCV</td>
<td>MSG</td>
<td>RT</td>
<td></td>
</tr>
<tr>
<td>DFUP</td>
<td>GRDX</td>
<td>NE</td>
<td>RTMCR</td>
<td></td>
</tr>
</tbody>
</table>
5. Table of System Variables

<table>
<thead>
<tr>
<th>System Variable</th>
<th>Format</th>
<th>Setting Range</th>
<th>Subscript</th>
<th>Read / Write</th>
<th>Inch / mm Conversion</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero offset data</td>
<td>VZOF*</td>
<td>0 - ±99999.999</td>
<td>Work coordinate system</td>
<td>R / W</td>
<td>Automatically converted</td>
<td></td>
</tr>
<tr>
<td>Tool length offset data</td>
<td>VTOFH*</td>
<td>0 - ±999.999</td>
<td>Tool length offset number</td>
<td>R / W</td>
<td>Automatically converted</td>
<td></td>
</tr>
<tr>
<td>Cutter diameter compensation data</td>
<td>VTOFD*</td>
<td>0 - ±999.999</td>
<td>Cutter radius compensation number</td>
<td>R / W</td>
<td>Automatically converted</td>
<td></td>
</tr>
<tr>
<td>Travel end value (positive direction) (User parameter)</td>
<td>VPSL*</td>
<td>0 - ±99999.999</td>
<td>R / W</td>
<td>Automatically converted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel end value (negative direction) (User parameter)</td>
<td>VNSL*</td>
<td>0 - ±99999.999</td>
<td>R / W</td>
<td>Automatically converted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backlash compensation data</td>
<td>VBLC*</td>
<td>0 - 1.000</td>
<td>R / W</td>
<td>Automatically converted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-position width</td>
<td>VINP*</td>
<td>0 - 1.000</td>
<td>R / W</td>
<td>Automatically converted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-position width for home position</td>
<td>VHPI*</td>
<td>0 - 1.000</td>
<td>R / W</td>
<td>Automatically converted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero point of machine coordinate system</td>
<td>VMOF*</td>
<td>0 - ±99999.999</td>
<td>R / W</td>
<td>Automatically converted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmable travel end (positive direction) (User parameter)</td>
<td>VPPL*</td>
<td>0 - ±99999.999</td>
<td>R / W</td>
<td>Automatically converted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmable travel end (negative direction) (User parameter)</td>
<td>VNPL*</td>
<td>0 - ±99999.999</td>
<td>R / W</td>
<td>Automatically converted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position of home position</td>
<td>VHPP*</td>
<td>0 - ±99999.999</td>
<td>1 - 32</td>
<td>Automatically converted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor contact point data</td>
<td>VSAP*</td>
<td>0 - ±99999.999</td>
<td>R / W</td>
<td>Automatically converted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For communications for automating equipment</td>
<td>VNCOM*</td>
<td>Binary 8 bits (1 byte)</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated value</td>
<td>VRCO*</td>
<td></td>
<td>Read only</td>
<td>Automatically converted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual position data</td>
<td>VAPA*</td>
<td></td>
<td>Read only</td>
<td>Automatically converted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active coordinate system number</td>
<td>VACOD</td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual tool number</td>
<td>VATOL</td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next tool number</td>
<td>VNTOL</td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of coordinate systems, tool data sets (NC specification code 2)</td>
<td>VSPCO</td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Variable</td>
<td>Format</td>
<td>Setting Range</td>
<td>Subscript</td>
<td>Read / Write</td>
<td>Inch / mm Conversion</td>
<td>Refer to</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Specification code for subprograms</td>
<td>VSPSB</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>(NC specification code No. 24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine lock</td>
<td>VMLOK</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>3D graphic view angle, H</td>
<td>VGRH</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>3D graphic view angle, V</td>
<td>VGRV</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Printer control</td>
<td>VPCNT</td>
<td>Binary 8 bits</td>
<td>(1 byte)</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Automating specification judgment result 1</td>
<td>VOK1</td>
<td>Binary 8 bits</td>
<td>(1 byte)</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Automating specification judgment result 2</td>
<td>VOK2</td>
<td>Binary 8 bits</td>
<td>(1 byte)</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Gauging number</td>
<td>VNUM</td>
<td>0 - 9999</td>
<td></td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Printer control</td>
<td>VINTG</td>
<td>0 - ±9999.9999</td>
<td></td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Printer control</td>
<td>VPRT</td>
<td>Binary 8 bits</td>
<td>(1 byte)</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Actual tool number</td>
<td>VTLCN</td>
<td>0 - 65535</td>
<td></td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Next tool number</td>
<td>VTLNN</td>
<td>0 - 65535</td>
<td></td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Tool length / tool break-age detection selection flag</td>
<td>VFST</td>
<td>Binary 8 bits</td>
<td>(1 byte)</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Feedrate clamp value</td>
<td>VFDMX</td>
<td>0 - 2000</td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Graphic color designation</td>
<td>VGCLR</td>
<td>0 - 9</td>
<td></td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Program unit system</td>
<td>VINCH</td>
<td>Binary 8 bits</td>
<td>(1 byte)</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Sequence return flag</td>
<td>VRSTT</td>
<td>Binary 8 bits</td>
<td>(1 byte)</td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Hour meter (run hour)</td>
<td>VDTIM</td>
<td>[a, b]</td>
<td>a: 1 - 5</td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Work counter</td>
<td>VWRK</td>
<td>[a, b]</td>
<td>b: 1 - 2</td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Synchronized tapping torque monitoring parameter</td>
<td>VTMNO</td>
<td>1 - 5</td>
<td></td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Synchronized tapping monitoring parameter</td>
<td>VTMDT</td>
<td>[expression]</td>
<td>1 - 5</td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Spindle overload monitoring parameter number</td>
<td>VSLNO</td>
<td>1 - 5</td>
<td></td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Spindle override monitoring parameter</td>
<td>VSLDT</td>
<td>[a, b]</td>
<td>a: 1 - 5</td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b: 1 - 3</td>
<td>R / W</td>
<td>Automatically converted</td>
<td>207</td>
</tr>
</tbody>
</table>

System Variable Format Setting Range Subscript Read / Write Inch / mm Conversion Refer to
<table>
<thead>
<tr>
<th>System Variable</th>
<th>Format</th>
<th>Setting Range</th>
<th>Subscript</th>
<th>Read / Write</th>
<th>Inch / mm Conversion</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1-digit parameter set feedrate</td>
<td>VPF1F [expression]</td>
<td>0 - 4000.000</td>
<td>1 - 9</td>
<td>R / W</td>
<td>Automatically converted</td>
<td></td>
</tr>
<tr>
<td>F1-digit max. parameter setting value</td>
<td>VPF1M [expression]</td>
<td>0 - 4000.000</td>
<td>1 - 9</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>F1-digit parameter acceleration/deceleration data</td>
<td>VPF1C</td>
<td>0 - 4000000</td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Executing G code</td>
<td>VGCOD [expression]</td>
<td>1 - 96</td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Executing M code</td>
<td>VMCOD [expression]</td>
<td>1 - 64</td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Executing S code</td>
<td>VSCOD</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Executing F code</td>
<td>VFCOD</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Executing D code</td>
<td>VDCOD</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Executing H code</td>
<td>VHCOD</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Mirror image status</td>
<td>VMRI</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Minute counter for hours</td>
<td>VPMNT</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Minute counter</td>
<td>VRMNT</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Hour counter for date</td>
<td>VPHUR</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Hour counter</td>
<td>VRHUR</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Day counter</td>
<td>VQDAT</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Manual shift amount</td>
<td>VMSF*</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Automatically converted</td>
<td></td>
</tr>
<tr>
<td>Number of ATC tools</td>
<td>VSPTN</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>PPC parameter</td>
<td>VPPCP</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>PPC pallet number</td>
<td>VPLNO</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>PPC parameter bit data</td>
<td>VPLDT [expression]</td>
<td>1 - 12</td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Crossrail automatic positioning M code</td>
<td>VECWM</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Actual attachment number</td>
<td>VATNT</td>
<td></td>
<td></td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Tool management data</td>
<td>VTL1D1 [expression]</td>
<td>0 - 255</td>
<td>Tool management number</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>System Variable</td>
<td>Format</td>
<td>Setting Range</td>
<td>Subscript</td>
<td>Read / Write</td>
<td>Inch / mm Conversion</td>
<td>Refer to</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Tool management data</td>
<td>VTLD2 [expression]</td>
<td>0 - 9</td>
<td>Tool management number</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Tool life management mode</td>
<td>VTLD3 [expression]</td>
<td>0 - 255</td>
<td>Tool management number</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>OK / NG flag</td>
<td>VTLD4 [expression]</td>
<td>0 - 255</td>
<td>Tool management number</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Tool life flag</td>
<td>VTLD5 [expression]</td>
<td>0 - 320</td>
<td>Tool management number</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Second tool offset number</td>
<td>VTLD6 [expression]</td>
<td>0 - 320</td>
<td>Tool management number</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Tool life count data</td>
<td>VTLD7 [expression]</td>
<td>0 - 32767</td>
<td>Tool management number</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>Tool life data</td>
<td>VTLD8 [expression]</td>
<td>-32768 - 32767</td>
<td>Tool management number</td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>MOP tool number</td>
<td>VMPT</td>
<td>0 - 9</td>
<td></td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>MOP control 1</td>
<td>VMPC1</td>
<td>Binary 8 bits (1 byte)</td>
<td></td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>MOP control 2</td>
<td>VMPC2</td>
<td>Binary 8 bits (1 byte)</td>
<td></td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>MOP control 3</td>
<td>VMPC3</td>
<td>Binary 8 bits (1 byte)</td>
<td></td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>MOP control 4</td>
<td>VMPC4</td>
<td>Binary 8 bits (1 byte)</td>
<td></td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>MOP control 5</td>
<td>VMPC5</td>
<td>Binary 8 bits (1 byte)</td>
<td></td>
<td>R / W</td>
<td>Not changed</td>
<td></td>
</tr>
<tr>
<td>I / O data (input)</td>
<td>VIRD</td>
<td>Identifier</td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I / O data (output)</td>
<td>VORD</td>
<td>Identifier</td>
<td>Read only</td>
<td>Not changed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: Represents an axis name such as X, Y and Z
LIST OF PUBLICATIONS

<table>
<thead>
<tr>
<th>Publication No.</th>
<th>Date</th>
<th>Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4292-E</td>
<td>January 2000</td>
<td>2nd</td>
</tr>
<tr>
<td>4292-E-R1</td>
<td>October 2000</td>
<td>3rd</td>
</tr>
<tr>
<td>4292-E-R2</td>
<td>April 2001</td>
<td>4th</td>
</tr>
<tr>
<td>4292-E-R3</td>
<td>August 2002</td>
<td>5th</td>
</tr>
</tbody>
</table>

This manual may be at variance with the actual product due to specification or design changes.

Please also note that specifications are subject to change without notice.
If you require clarification or further explanation of any point in this manual, please contact your OKUMA representative.